These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37576034)
1. Investigation of microwave application time with constant pulse ratio on drying of zucchini. Dehghannya J; Farhoudi S; Dadashi S Food Sci Nutr; 2023 Aug; 11(8):4794-4811. PubMed ID: 37576034 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Dehghannya J; Kadkhodaei S; Heshmati MK; Ghanbarzadeh B Ultrasonics; 2019 Jul; 96():104-122. PubMed ID: 30827686 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of dried apple using hot air, intermittent and continuous microwave: evaluation of kinetic parameters and physicochemical quality attributes. Aghilinategh N; Rafiee S; Gholikhani A; Hosseinpur S; Omid M; Mohtasebi SS; Maleki N Food Sci Nutr; 2015 Nov; 3(6):519-26. PubMed ID: 26788293 [TBL] [Abstract][Full Text] [Related]
4. Effect of intermittent microwave convective drying on physicochemical properties of dragon fruit. Raj GVSB; Dash KK Food Sci Biotechnol; 2022 May; 31(5):549-560. PubMed ID: 35529687 [TBL] [Abstract][Full Text] [Related]
5. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Kumar D; Prasad S; Murthy GS J Food Sci Technol; 2014 Feb; 51(2):221-32. PubMed ID: 24493879 [TBL] [Abstract][Full Text] [Related]
6. Standardization of process parameters for microwave assisted convective dehydration of ginger. Mohanta B; Dash SK; Panda MK; Sahoo GR J Food Sci Technol; 2014 Apr; 51(4):673-81. PubMed ID: 24741160 [TBL] [Abstract][Full Text] [Related]
7. Phenolic content and some physical properties of dried broccoli as affected by drying method. Yilmaz MS; Şakiyan Ö; Barutcu Mazi I; Mazi BG Food Sci Technol Int; 2019 Jan; 25(1):76-88. PubMed ID: 30205717 [TBL] [Abstract][Full Text] [Related]
8. Real-time color change monitoring of apple slices using image processing during intermittent microwave convective drying. Aghilinategh N; Rafiee S; Hosseinpour S; Omid M; Mohtasebi SS Food Sci Technol Int; 2016 Oct; 22(7):634-646. PubMed ID: 27048559 [TBL] [Abstract][Full Text] [Related]
9. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries. Meda V; Gupta M; Opoku A J Microw Power Electromagn Energy; 2008; 42(4):4-12. PubMed ID: 19227059 [TBL] [Abstract][Full Text] [Related]
11. Effects of ultrasound and microwave pretreatments of carrot slices before drying on the color indexes and drying rate. Salehi F; Goharpour K; Razavi Kamran H Ultrason Sonochem; 2023 Dec; 101():106671. PubMed ID: 37918296 [TBL] [Abstract][Full Text] [Related]
12. Optimization of intermittent microwave-convective drying using response surface methodology. Aghilinategh N; Rafiee S; Hosseinpur S; Omid M; Mohtasebi SS Food Sci Nutr; 2015 Jul; 3(4):331-41. PubMed ID: 26286706 [TBL] [Abstract][Full Text] [Related]
13. Structural change kinetics, drying characteristics, antioxidant properties, and the correlation between quality parameters of dried duckweed (Wolffia arrhiza (L.) Wimm) affected by different levels of microwave power. Suebsamran I; Dachyong A; Tira-Umphon A; Soubsub K; Phahom T J Sci Food Agric; 2023 Jul; 103(9):4371-4379. PubMed ID: 36788441 [TBL] [Abstract][Full Text] [Related]
14. Physico-chemical aspects of Thai fermented fish viscera, Tai-Pla, curry powder processed by hot air drying and hybrid microwave-infrared drying. Choopan W; Panpipat W; Nisoa M; Cheong LZ; Chaijan M PLoS One; 2021; 16(6):e0253834. PubMed ID: 34170970 [TBL] [Abstract][Full Text] [Related]
15. Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying. Zeng S; Wang B; Lv W; Wu Y Food Chem; 2023 Mar; 404(Pt B):134741. PubMed ID: 36332585 [TBL] [Abstract][Full Text] [Related]
16. Effects of microwave drying on physicochemical characteristics, microstructure, and antioxidant properties of propolis extract. Ozdemir M; Karagoz S J Sci Food Agric; 2024 Mar; 104(4):2189-2197. PubMed ID: 37934121 [TBL] [Abstract][Full Text] [Related]
17. Effects of microwave vacuum drying on the moisture migration, microstructure, and rehydration of sea cucumber. He X; Lin R; Cheng S; Wang S; Yuan L; Wang H; Wang H; Tan M J Food Sci; 2021 Jun; 86(6):2499-2512. PubMed ID: 34056720 [TBL] [Abstract][Full Text] [Related]
18. Influence of ultrasonic pretreatments on microwave hot-air flow rolling drying mechanism, thermal characteristics and rehydration dynamics of Pleurotus eryngii. Su D; Sun W; Li BZ; Yang Y; Wang Y; Lv W; Li D; Wang L J Sci Food Agric; 2022 Mar; 102(5):2100-2109. PubMed ID: 34596248 [TBL] [Abstract][Full Text] [Related]
19. Effects of different drying methods on physicochemical, textural, flavor, and sensory characteristics of yak jerky. Fan Y; Guo C; Zhu Y; Liu D; Liu Y Meat Sci; 2024 Oct; 216():109570. PubMed ID: 38908105 [TBL] [Abstract][Full Text] [Related]
20. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer. Nanvakenari S; Movagharnejad K; Latifi A Food Res Int; 2022 Sep; 159():111617. PubMed ID: 35940808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]