These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37576250)

  • 1. Root growth and physiological responses in wheat to topsoil and subsoil compaction with or without artificial vertical macropores.
    Mondal S; Chakraborty D
    Heliyon; 2023 Aug; 9(8):e18834. PubMed ID: 37576250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The position of localized soil compaction determines root and subsequent shoot growth responses.
    Montagu KD; Conroy JP; Atwell BJ
    J Exp Bot; 2001 Nov; 52(364):2127-33. PubMed ID: 11604451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil strength influences wheat root interactions with soil macropores.
    Atkinson JA; Hawkesford MJ; Whalley WR; Zhou H; Mooney SJ
    Plant Cell Environ; 2020 Jan; 43(1):235-245. PubMed ID: 31600410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant root tortuosity: an indicator of root path formation in soil with different composition and density.
    Popova L; van Dusschoten D; Nagel KA; Fiorani F; Mazzolai B
    Ann Bot; 2016 Oct; 118(4):685-698. PubMed ID: 27192709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial macropores attract crop roots and enhance plant productivity on compacted soils.
    Colombi T; Braun S; Keller T; Walter A
    Sci Total Environ; 2017 Jan; 574():1283-1293. PubMed ID: 27712865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.
    Hultine KR; Koepke DF; Pockman WT; Fravolini A; Sperry JS; Williams DG
    Tree Physiol; 2006 Mar; 26(3):313-23. PubMed ID: 16356903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of compaction and simulated root channels in the subsoil on root development, water uptake and growth of radiata pine.
    Nambiar EK; Sands R
    Tree Physiol; 1992 Apr; 10(3):297-306. PubMed ID: 14969986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.
    Paudel I; Cohen S; Shaviv A; Bar-Tal A; Bernstein N; Heuer B; Ephrath J
    Tree Physiol; 2016 Jun; 36(6):770-85. PubMed ID: 27022106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.
    Gomez GA; Singer MJ; Powers RF; Horwath WR
    Tree Physiol; 2002 May; 22(7):459-67. PubMed ID: 11986049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data validating the use of rubidium as a non-radioactive tracer for the localised proliferation of wheat roots in acidic or limed subsoil.
    Damon PM; Azam G; Gazey C; Scanlan CA; Rengel Z
    Data Brief; 2022 Apr; 41():107868. PubMed ID: 35141375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Soil Type, Temperature, and Moisture on Development of Fusarium Root Rot of Soybean by
    Yan H; Nelson B
    Plant Dis; 2022 Nov; 106(11):2974-2983. PubMed ID: 35412331
    [No Abstract]   [Full Text] [Related]  

  • 12. Field traffic-induced soil compaction under moderate machine-field conditions affects soil properties and maize yield on sandy loam soil.
    Nawaz MM; Noor MA; Latifmanesh H; Wang X; Ma W; Zhang W
    Front Plant Sci; 2023; 14():1002943. PubMed ID: 37409307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between wheat roots and soil pores in structured field soil.
    Zhou H; Whalley WR; Hawkesford MJ; Ashton RW; Atkinson B; Atkinson JA; Sturrock CJ; Bennett MJ; Mooney SJ
    J Exp Bot; 2021 Feb; 72(2):747-756. PubMed ID: 33064808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of water deficit on the development and senescence of tomato roots grown under various soil textures of Shaanxi, China.
    Ahmad H; Li J
    BMC Plant Biol; 2021 May; 21(1):241. PubMed ID: 34049491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jatropha curcas L. root structure and growth in diverse soils.
    Valdés-Rodríguez OA; Sánchez-Sánchez O; Pérez-Vázquez A; Caplan JS; Danjon F
    ScientificWorldJournal; 2013; 2013():827295. PubMed ID: 23844412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the influence of water deficit on root and shoot growth in wheat using X-ray Computed Tomography.
    Khalil AM; Murchie EH; Mooney SJ
    AoB Plants; 2020 Oct; 12(5):plaa036. PubMed ID: 32905427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of plant species and soil condition in the structural development of the rhizosphere.
    Helliwell JR; Sturrock CJ; Miller AJ; Whalley WR; Mooney SJ
    Plant Cell Environ; 2019 Jun; 42(6):1974-1986. PubMed ID: 30719731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-element uptake and growth responses of Rice (Oryza sativa L.) to TiO
    Arshad M; Nisar S; Gul I; Nawaz U; Irum S; Ahmad S; Sadat H; Mian IA; Ali S; Rizwan M; Alsahli AA; Alyemeni MN
    Ecotoxicol Environ Saf; 2021 Jun; 215():112149. PubMed ID: 33773153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution and abundance of wheat roots in a dense, structured subsoil--implications for water uptake.
    White RG; Kirkegaard JA
    Plant Cell Environ; 2010 Feb; 33(2):133-48. PubMed ID: 19895403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography.
    Tracy SR; Black CR; Roberts JA; Sturrock C; Mairhofer S; Craigon J; Mooney SJ
    Ann Bot; 2012 Jul; 110(2):511-9. PubMed ID: 22362666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.