These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37576673)

  • 1. Analysis of the Contribution of Petroleum Acid Components to the Viscosity of Heavy Oils with High TAN.
    Liu S; Wu J; Xu Z; Zhang L; Zhao S
    ACS Omega; 2023 Aug; 8(31):28866-28876. PubMed ID: 37576673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure of Heavy Oil Components and Mechanism of Influence on Viscosity of Heavy Oil.
    Wang Q; Zhang W; Wang C; Han X; Wang H; Zhang H
    ACS Omega; 2023 Mar; 8(12):10980-10990. PubMed ID: 37008103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing raw materials as potential adsorbents to remove acidic compounds from Brazilian crude oils by ESI (-) FT-ICR MS.
    Abib GAP; Martins LL; Araujo LLGC; Isidorio TV; Pudenzi MA; Santos VH; Cruz GFD
    An Acad Bras Cienc; 2020; 92(3):e20200214. PubMed ID: 33295485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between hydrophobic chitosan derivative and asphaltene in heavy oil to reduce viscosity of heavy oil.
    Yu J; Quan H; Huang Z; Shi J; Chang S; Zhang L; Chen X; Hu Y
    Int J Biol Macromol; 2023 Aug; 247():125573. PubMed ID: 37442502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills.
    Li SL; He JH; Li Z; Lu JH; Liu BW; Fu T; Zhao HB; Wang YZ
    J Hazard Mater; 2022 Aug; 436():129272. PubMed ID: 35739787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the total acid number (TAN) of colombian crude oils via ATR-FTIR spectroscopy and chemometric methods.
    Rivera-Barrera D; Rueda-Chacón H; Molina V D
    Talanta; 2020 Jan; 206():120186. PubMed ID: 31514870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory Experiments on the In Situ Upgrading of Heavy Crude Oil Using Catalytic Aquathermolysis by Acidic Ionic Liquid.
    D Alharthy R; El-Nagar RA; Ghanem A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics.
    Cho Y; Ahmed A; Islam A; Kim S
    Mass Spectrom Rev; 2015; 34(2):248-63. PubMed ID: 24942384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asphaltene biotransformation for heavy oil upgradation.
    Zargar AN; Kumar A; Sinha A; Kumar M; Skiadas I; Mishra S; Srivastava P
    AMB Express; 2021 Sep; 11(1):127. PubMed ID: 34491455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Simulation Studies of Imidazolium Chloride Ionic Liquids with Different Alkyl Chain Lengths for Viscosity Reductions in Heavy Crude Oil: The Effect on Asphaltene Dispersion.
    Xiang C; Zhu Y; Liu G; Liu T; Xu X; Yang J
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the asphaltene and carboxylic acid content of a heavy oil using a microfluidic device.
    Bowden SA; Wilson R; Parnell J; Cooper JM
    Lab Chip; 2009 Mar; 9(6):828-32. PubMed ID: 19255665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of asphaltene molecules in crude oil viscoelasticity enhancement.
    Cui P; Yuan S; Zhang H; Yuan S
    J Mol Graph Model; 2024 Jan; 126():108663. PubMed ID: 37931579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions.
    Ismail AI; Atta AM; El-Newehy M; El-Hefnawy ME
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32498350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Ultrasonic Physical-Chemical Viscosity Reduction for Different Heavy Oils.
    Liu J; Yang F; Xia J; Wu F; Pu C
    ACS Omega; 2021 Jan; 6(3):2276-2283. PubMed ID: 33521467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using machine learning-based variable selection to identify hydrate related components from FT-ICR MS spectra.
    Gjelsvik EL; Fossen M; Brunsvik A; Tøndel K
    PLoS One; 2022; 17(8):e0273084. PubMed ID: 35976915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil.
    Lavania M; Cheema S; Sarma PM; Mandal AK; Lal B
    Biodegradation; 2012 Feb; 23(1):15-24. PubMed ID: 21611744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line desalting of crude oil in the source region of a Fourier transform ion cyclotron resonance mass spectrometer.
    Chanthamontri CK; Stopford AP; Snowdon RW; Oldenburg TB; Larter SR
    J Am Soc Mass Spectrom; 2014 Aug; 25(8):1506-10. PubMed ID: 24845352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insight into the role of the self-assembly of heteroatom compounds in heavy oil viscosity enhancement.
    Fang J; Ji B; Wang X; Yuan S; Yu H
    Phys Chem Chem Phys; 2024 May; 26(20):14857-14865. PubMed ID: 38738300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of ultrasonic irradiation effect on viscosity variations of heavy crude oil.
    Gao J; Li C; Xu D; Wu P; Lin W; Wang X
    Ultrason Sonochem; 2021 Dec; 81():105842. PubMed ID: 34847448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Crude Oil Properties and Dispersant on the Microstructure and Viscosity of Seawater-in-Oil Emulsions.
    Muriel DF; Katz J
    Langmuir; 2023 Feb; 39(5):2043-2062. PubMed ID: 36706373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.