These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37576712)

  • 1. Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers.
    Kim S; Schroeder CM; Jackson NE
    ACS Polym Au; 2023 Aug; 3(4):318-330. PubMed ID: 37576712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMiPoly: Generation of a Synthesizable Polymer Virtual Library Using Rule-Based Polymerization Reactions.
    Ohno M; Hayashi Y; Zhang Q; Kaneko Y; Yoshida R
    J Chem Inf Model; 2023 Sep; 63(17):5539-5548. PubMed ID: 37604495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Click Step-Growth Polymerization and
    Worch JC; Dove AP
    Acc Chem Res; 2022 Sep; 55(17):2355-2369. PubMed ID: 36006902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers.
    Mai DJ; Schroeder CM
    ACS Macro Lett; 2020 Sep; 9(9):1332-1341. PubMed ID: 35638639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.
    Pelegri-O'Day EM; Maynard HD
    Acc Chem Res; 2016 Sep; 49(9):1777-85. PubMed ID: 27588677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature Polymer Dielectrics Designed Using an Invertible Molecular Graph Generative Model.
    Liu DF; Zhang YX; Dong WZ; Feng QK; Zhong SL; Dang ZM
    J Chem Inf Model; 2023 Dec; 63(24):7669-7675. PubMed ID: 38061777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graph representation of molecular ensembles for polymer property prediction.
    Aldeghi M; Coley CW
    Chem Sci; 2022 Sep; 13(35):10486-10498. PubMed ID: 36277616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycloadditions in modern polymer chemistry.
    Delaittre G; Guimard NK; Barner-Kowollik C
    Acc Chem Res; 2015 May; 48(5):1296-307. PubMed ID: 25871918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Polyarylenes with Various Structural Features via Bergman Cyclization Polymerization.
    Wang Y; Chen S; Hu A
    Top Curr Chem (Cham); 2017 Jun; 375(3):60. PubMed ID: 28534207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyhomologation. A living C1 polymerization.
    Luo J; Shea KJ
    Acc Chem Res; 2010 Nov; 43(11):1420-33. PubMed ID: 20825177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review.
    Altuntaş E; Schubert US
    Anal Chim Acta; 2014 Jan; 808():56-69. PubMed ID: 24370093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language.
    Park NH; Manica M; Born J; Hedrick JL; Erdmann T; Zubarev DY; Adell-Mill N; Arrechea PL
    Nat Commun; 2023 Jun; 14(1):3686. PubMed ID: 37344485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Brushes: Efficient Synthesis and Applications.
    Feng C; Huang X
    Acc Chem Res; 2018 Sep; 51(9):2314-2323. PubMed ID: 30137964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer Chemistry in Living Cells.
    Zhou Z; Maxeiner K; Ng DYW; Weil T
    Acc Chem Res; 2022 Oct; 55(20):2998-3009. PubMed ID: 36178462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Isocyanide-Based Polymers.
    Cai Z; Ren Y; Li X; Shi J; Tong B; Dong Y
    Acc Chem Res; 2020 Dec; 53(12):2879-2891. PubMed ID: 33216523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning with Enormous "Synthetic" Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks.
    Volgin IV; Batyr PA; Matseevich AV; Dobrovskiy AY; Andreeva MV; Nazarychev VM; Larin SV; Goikhman MY; Vizilter YV; Askadskii AA; Lyulin SV
    ACS Omega; 2022 Dec; 7(48):43678-43691. PubMed ID: 36506114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical sequencing of single synthetic polymers.
    Ye R; Sun X; Mao X; Alfonso FS; Baral S; Liu C; Coates GW; Chen P
    Nat Chem; 2024 Feb; 16(2):210-217. PubMed ID: 37945834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers.
    Pilania G; Iverson CN; Lookman T; Marrone BL
    J Chem Inf Model; 2019 Dec; 59(12):5013-5025. PubMed ID: 31697891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.