These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37577092)

  • 1. Photoliquefaction and phase transition of
    Morikawa MA; Yamanaka Y; Ho Hui JK; Kimizuka N
    RSC Adv; 2023 Aug; 13(34):24031-24037. PubMed ID: 37577092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoswitches with different numbers of azo chromophores for molecular solar thermal storage.
    Sun S; Liang S; Xu WC; Wang M; Gao J; Zhang Q; Wu S
    Soft Matter; 2022 Nov; 18(46):8840-8849. PubMed ID: 36373235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal Utilization of Latent Heat in Erythritol-based Phase Change Materials as Solar Thermal Fuels.
    Chen J; Kou Y; Zhang S; Zhang X; Liu H; Yan H; Shi Q
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400759. PubMed ID: 38375575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels.
    Yang Y; Huang S; Ma Y; Yi J; Jiang Y; Chang X; Li Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35623-35634. PubMed ID: 35916069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectivity matters - ultrafast isomerization dynamics of bisazobenzene photoswitches.
    Slavov C; Yang C; Schweighauser L; Boumrifak C; Dreuw A; Wegner HA; Wachtveitl J
    Phys Chem Chem Phys; 2016 Jun; 18(22):14795-804. PubMed ID: 26996604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design.
    Zhang L; Liu H; Du Q; Zhang G; Zhu S; Wu Z; Luo X
    Small; 2023 Mar; 19(10):e2206623. PubMed ID: 36534833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoliquefiable ionic crystals: a phase crossover approach for photon energy storage materials with functional multiplicity.
    Ishiba K; Morikawa MA; Chikara C; Yamada T; Iwase K; Kawakita M; Kimizuka N
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1532-6. PubMed ID: 25483773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of advanced thermal analysis for characterization of crystalline and amorphous phases of carvedilol.
    Skotnicki M; Czerniecka-Kubicka A; Neilsen G; Woodfield BF; Pyda M
    J Pharm Biomed Anal; 2022 Aug; 217():114822. PubMed ID: 35550491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density.
    Chen H; Yang C; Ren H; Zhang W; Cui X; Tang Q
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37944917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat capacity of cytisine - the drug for smoking cessation.
    Czerniecka-Kubicka A; Tutka P; Zarzyka I; Neilsen G; Woodfield BF; Skotnicki M; Pyda M
    Eur J Pharm Sci; 2023 Apr; 183():106397. PubMed ID: 36736465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage.
    Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic limits to energy conversion in solar thermal fuels.
    Strubbe DA; Grossman JC
    J Phys Condens Matter; 2019 Jan; 31(3):034002. PubMed ID: 30523877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docosane-Organosilica Microcapsules for Structural Composites with Thermal Energy Storage/Release Capability.
    Fredi G; Dirè S; Callone E; Ceccato R; Mondadori F; Pegoretti A
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.