These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37577462)

  • 61. Kinetics and thermodynamics of RRF, EF-G, and thiostrepton interaction on the Escherichia coli ribosome.
    Seo HS; Kiel M; Pan D; Raj VS; Kaji A; Cooperman BS
    Biochemistry; 2004 Oct; 43(40):12728-40. PubMed ID: 15461445
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding.
    García-Ortega L; Alvarez-García E; Gavilanes JG; Martínez-del-Pozo A; Joseph S
    Nucleic Acids Res; 2010 Jul; 38(12):4108-19. PubMed ID: 20215430
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rejection of tmRNA·SmpB after GTP hydrolysis by EF-Tu on ribosomes stalled on intact mRNA.
    Kurita D; Miller MR; Muto A; Buskirk AR; Himeno H
    RNA; 2014 Nov; 20(11):1706-14. PubMed ID: 25246654
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Release of ribosome-bound ribosome recycling factor by elongation factor G.
    Kiel MC; Raj VS; Kaji H; Kaji A
    J Biol Chem; 2003 Nov; 278(48):48041-50. PubMed ID: 12960150
    [TBL] [Abstract][Full Text] [Related]  

  • 65. EF-G-induced ribosome sliding along the noncoding mRNA.
    Klimova M; Senyushkina T; Samatova E; Peng BZ; Pearson M; Peske F; Rodnina MV
    Sci Adv; 2019 Jun; 5(6):eaaw9049. PubMed ID: 31183409
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanistic dissection of premature translation termination induced by acidic residues-enriched nascent peptide.
    Chadani Y; Kanamori T; Niwa T; Ichihara K; Nakayama KI; Matsumoto A; Taguchi H
    Cell Rep; 2023 Dec; 42(12):113569. PubMed ID: 38071619
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in
    Sabi R; Tuller T
    RNA; 2017 Jul; 23(7):983-994. PubMed ID: 28363900
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A new family of bacterial ribosome hibernation factors.
    Helena-Bueno K; Rybak MY; Ekemezie CL; Sullivan R; Brown CR; Dingwall C; Baslé A; Schneider C; Connolly JPR; Blaza JN; Csörgő B; Moynihan PJ; Gagnon MG; Hill CH; Melnikov SV
    Nature; 2024 Feb; 626(8001):1125-1132. PubMed ID: 38355796
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The N terminus of eukaryotic translation elongation factor 3 interacts with 18 S rRNA and 80 S ribosomes.
    Gontarek RR; Li H; Nurse K; Prescott CD
    J Biol Chem; 1998 Apr; 273(17):10249-52. PubMed ID: 9553076
    [TBL] [Abstract][Full Text] [Related]  

  • 70. PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G).
    Sharma MR; Dönhöfer A; Barat C; Marquez V; Datta PP; Fucini P; Wilson DN; Agrawal RK
    J Biol Chem; 2010 Feb; 285(6):4006-4014. PubMed ID: 19965869
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanisms of ribosome stalling by SecM at multiple elongation steps.
    Zhang J; Pan X; Yan K; Sun S; Gao N; Sui SF
    Elife; 2015 Dec; 4():. PubMed ID: 26670735
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes.
    Nygård O; Nilsson L
    Biochim Biophys Acta; 1985 Feb; 824(2):152-62. PubMed ID: 3970930
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Conformational control of the interaction of eukaryotic elongation factors EF-1 and EF-2 with ribosomes.
    Nombela C; Ochoa S
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3556-60. PubMed ID: 4519645
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genetic depletion of the RNA helicase DDX3 leads to impaired elongation of translating ribosomes triggering co-translational quality control of newly synthesized polypeptides.
    Padmanabhan PK; Ferreira GR; Zghidi-Abouzid O; Oliveira C; Dumas C; Mariz FC; Papadopoulou B
    Nucleic Acids Res; 2021 Sep; 49(16):9459-9478. PubMed ID: 34358325
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Elongation Factor P and the Control of Translation Elongation.
    Rajkovic A; Ibba M
    Annu Rev Microbiol; 2017 Sep; 71():117-131. PubMed ID: 28886684
    [TBL] [Abstract][Full Text] [Related]  

  • 76. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences.
    Pelechano V; Alepuz P
    Nucleic Acids Res; 2017 Jul; 45(12):7326-7338. PubMed ID: 28549188
    [TBL] [Abstract][Full Text] [Related]  

  • 77. eIF5A promotes translation of polyproline motifs.
    Gutierrez E; Shin BS; Woolstenhulme CJ; Kim JR; Saini P; Buskirk AR; Dever TE
    Mol Cell; 2013 Jul; 51(1):35-45. PubMed ID: 23727016
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Base 2661 in Escherichia coli 23S rRNA influences the binding of elongation factor Tu during protein synthesis in vivo.
    Tapio S; Isaksson LA
    Eur J Biochem; 1991 Dec; 202(3):981-4. PubMed ID: 1765106
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structure of the ribosome with elongation factor G trapped in the pretranslocation state.
    Brilot AF; Korostelev AA; Ermolenko DN; Grigorieff N
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20994-9. PubMed ID: 24324137
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Arginine-rhamnosylation as new strategy to activate translation elongation factor P.
    Lassak J; Keilhauer EC; Fürst M; Wuichet K; Gödeke J; Starosta AL; Chen JM; Søgaard-Andersen L; Rohr J; Wilson DN; Häussler S; Mann M; Jung K
    Nat Chem Biol; 2015 Apr; 11(4):266-70. PubMed ID: 25686373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.