These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37577489)

  • 1. Curved crease origami and topological singularities at a cellular scale enable hyper-extensibility of
    Flaum E; Prakash M
    bioRxiv; 2023 Aug; ():. PubMed ID: 37577489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curved crease origami and topological singularities enable hyperextensibility of
    Flaum E; Prakash M
    Science; 2024 Jun; 384(6700):eadk5511. PubMed ID: 38843314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled Active Systems Encode an Emergent Hunting Behavior in the Unicellular Predator Lacrymaria olor.
    Coyle SM; Flaum EM; Li H; Krishnamurthy D; Prakash M
    Curr Biol; 2019 Nov; 29(22):3838-3850.e3. PubMed ID: 31679941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting the branches of multistable non-Euclidean origami by crease stretching.
    Addis CC; Rojas S; Arrieta AF
    Phys Rev E; 2023 Nov; 108(5-2):055001. PubMed ID: 38115478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of rigid-foldable doubly curved origami tessellations based on trapezoidal crease patterns.
    Song K; Zhou X; Zang S; Wang H; You Z
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20170016. PubMed ID: 28484338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origami tubes with reconfigurable polygonal cross-sections.
    Filipov ET; Paulino GH; Tachi T
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150607. PubMed ID: 26997894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crumpling-origami transition for twisting cylindrical shells.
    Wang LM; Tsai ST; Lee CY; Hsiao PY; Deng JW; Fan Chiang HC; Fei Y; Hong TM
    Phys Rev E; 2020 May; 101(5-1):053001. PubMed ID: 32575209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curved-Crease Origami for Morphing Metamaterials.
    Karami A; Reddy A; Nassar H
    Phys Rev Lett; 2024 Mar; 132(10):108201. PubMed ID: 38518354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible membrane deformations by straight DNA origami filaments.
    Franquelim HG; Dietz H; Schwille P
    Soft Matter; 2021 Jan; 17(2):276-287. PubMed ID: 32406895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.
    Li S; Wang KW
    J R Soc Interface; 2015 Oct; 12(111):20150639. PubMed ID: 26400197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing of self-deploying origami structures using geometrically misaligned crease patterns.
    Saito K; Tsukahara A; Okabe Y
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150235. PubMed ID: 26997884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tiny, long-distance hunter.
    Gordillo L; Cerda E
    Science; 2024 Jun; 384(6700):1064-1065. PubMed ID: 38843349
    [No Abstract]   [Full Text] [Related]  

  • 13. Inflatable Metamorphic Origami.
    Wang S; Yan P; Huang H; Zhang N; Li B
    Research (Wash D C); 2023; 6():0133. PubMed ID: 37228636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness.
    Zhai Z; Wang Y; Jiang H
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2032-2037. PubMed ID: 29440441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing interpretable machine learning for holistic inverse design of origami.
    Zhu Y; Filipov ET
    Sci Rep; 2022 Nov; 12(1):19277. PubMed ID: 36369348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foldable cones as a framework for nonrigid origami.
    Andrade-Silva I; Adda-Bedia M; Dias MA
    Phys Rev E; 2019 Sep; 100(3-1):033003. PubMed ID: 31639905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile assemblies of Bennett linkages from four-crease origami patterns.
    Zhang X; Chen Y
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170621. PubMed ID: 29507512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study of Deployable Structures Based on Nature Inspired Curved-Crease Folding.
    Dutta GS; Meiners D; Ziegmann G
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical model of membrane protrusions driven by curved active proteins.
    Ravid Y; Penič S; Mimori-Kiyosue Y; Suetsugu S; Iglič A; Gov NS
    Front Mol Biosci; 2023; 10():1153420. PubMed ID: 37228585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent programmable behavior and chaos in dynamically driven active filaments.
    Krishnamurthy D; Prakash M
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2304981120. PubMed ID: 37406100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.