These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37577674)

  • 1. Patient-specific computational models of retinal prostheses.
    Kish KE; Yuan A; Weiland JD
    Res Sq; 2023 Aug; ():. PubMed ID: 37577674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-specific computational models of retinal prostheses.
    Kish KE; Yuan A; Weiland JD
    Sci Rep; 2023 Dec; 13(1):22271. PubMed ID: 38097732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38457841
    [No Abstract]   [Full Text] [Related]  

  • 4. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    medRxiv; 2023 Dec; ():. PubMed ID: 37546858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting perceptual thresholds in epiretinal prostheses.
    de Balthasar C; Patel S; Roy A; Freda R; Greenwald S; Horsager A; Mahadevappa M; Yanai D; McMahon MJ; Humayun MS; Greenberg RJ; Weiland JD; Fine I
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2303-14. PubMed ID: 18515576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Patient-Specific Computational Framework for the Argus II Implant.
    Finn KE; Zander HJ; Graham RD; Lempka SF; Weiland JD
    IEEE Open J Eng Med Biol; 2020; 1():190-196. PubMed ID: 33748766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrically elicited visual evoked potentials in Argus II retinal implant wearers.
    Stronks HC; Barry MP; Dagnelie G
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3891-901. PubMed ID: 23611993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects.
    Mahadevappa M; Weiland JD; Yanai D; Fine I; Greenberg RJ; Humayun MS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):201-6. PubMed ID: 16003900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Optimization of Retinal Ganglion Cell Spatial Activity in Response to Epiretinal Stimulation.
    Haji Ghaffari D; Akwaboah AD; Mirzakhalili E; Weiland JD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2733-2741. PubMed ID: 34941514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Model of Phosphene Appearance for Epiretinal Prostheses.
    Granley J; Beyeler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4477-4481. PubMed ID: 34892213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An
    Song X; Qiu S; Shivdasani MN; Zhou F; Liu Z; Ma S; Chai X; Chen Y; Cai X; Guo T; Li L
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35255486
    [No Abstract]   [Full Text] [Related]  

  • 16. Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects.
    Horsager A; Boynton GM; Greenberg RJ; Fine I
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):549-57. PubMed ID: 20720224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only.
    Christie B; Sadeghi R; Kartha A; Caspi A; Tenore FV; Klatzky RL; Dagnelie G; Billings S
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35613043
    [No Abstract]   [Full Text] [Related]  

  • 18. Monitoring Cortical Response and Electrode-Retina Impedance Under Epiretinal Stimulation in Rats.
    Xie H; Wang Y; Ye Z; Fang S; Xu Z; Wu T; Chan LLH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1178-1187. PubMed ID: 34152987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of waveform asymmetry on perception with epiretinal prostheses.
    Haji Ghaffari D; Finn KE; Jeganathan VSE; Patel U; Wuyyuru V; Roy A; Weiland JD
    J Neural Eng; 2020 Jul; 17(4):045009. PubMed ID: 32590371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the electrode array-retina gap distance on visual function in patients with the Argus II retinal prosthesis.
    Naidu A; Ghani N; Yazdanie MS; Chaudhary K
    BMC Ophthalmol; 2020 Sep; 20(1):366. PubMed ID: 32943044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.