These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37577816)

  • 1. Controlling the transport of the mixture involving active and passive rods in confined channel.
    Wang Z; Hao J
    Soft Matter; 2023 Aug; 19(33):6368-6375. PubMed ID: 37577816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing directed collective motion of self-propelled particles in confined channel.
    Wang Z; Hao J; Wang X; Xu J; Yang B
    J Phys Condens Matter; 2021 Aug; 33(41):. PubMed ID: 34229313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect dynamics in clusters of self-propelled rods in circular confinement.
    Wang Z; Si T; Hao J; Guan Y; Qin F; Yang B; Cao W
    Eur Phys J E Soft Matter; 2019 Nov; 42(11):150. PubMed ID: 31773335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferred penetration of active nano-rods into narrow channels and their clustering.
    Wang Z; Chu KC; Tsao HK; Sheng YJ
    Phys Chem Chem Phys; 2021 Aug; 23(30):16234-16241. PubMed ID: 34308947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft confinement of self-propelled rods: simulation and theory.
    Modica KJ; Takatori SC
    Soft Matter; 2024 Mar; 20(10):2331-2337. PubMed ID: 38372150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.
    Su YS; Wang HC; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):030302. PubMed ID: 25871033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective oscillation in dense suspension of self-propelled chiral rods.
    Liu Y; Yang Y; Li B; Feng XQ
    Soft Matter; 2019 Apr; 15(14):2999-3007. PubMed ID: 30860231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective behavior of self-propelled rods with quorum sensing.
    Abaurrea Velasco C; Abkenar M; Gompper G; Auth T
    Phys Rev E; 2018 Aug; 98(2-1):022605. PubMed ID: 30253508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field.
    Grauer J; Löwen H; Janssen LMC
    Phys Rev E; 2018 Feb; 97(2-1):022608. PubMed ID: 29548202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed drift and fluid pumping of nanoswimmers by periodic rectification-diffusion.
    Chen YF; Chen HY; Sheng YJ; Tsao HK
    J Chem Phys; 2017 Jan; 146(1):014902. PubMed ID: 28063455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncentral forces mediated between two inclusions in a bath of active Brownian rods.
    Sebtosheikh M; Naji A
    Sci Rep; 2021 Nov; 11(1):23100. PubMed ID: 34845241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driven transport of active particles through arrays of symmetric obstacles.
    Nayak S; Das S; Bag P; Debnath T; Ghosh PK
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37877479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active depletion torque between two passive rods.
    Li L; Liu P; Chen K; Zheng N; Yang M
    Soft Matter; 2022 Jun; 18(22):4265-4272. PubMed ID: 35609282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratchet transport powered by chiral active particles.
    Ai BQ
    Sci Rep; 2016 Jan; 6():18740. PubMed ID: 26795952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-propelled Janus particles in a ratchet: numerical simulations.
    Ghosh PK; Misko VR; Marchesoni F; Nori F
    Phys Rev Lett; 2013 Jun; 110(26):268301. PubMed ID: 23848928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toroid formation through self-assembly of graft copolymer and homopolymer mixtures: experimental studies and dissipative particle dynamics simulations.
    Chen L; Jiang T; Lin J; Cai C
    Langmuir; 2013 Jul; 29(26):8417-26. PubMed ID: 23738828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capture and transport of rod-shaped cargo via programmable active particles.
    Stengele P; Lüders A; Nielaba P
    Sci Rep; 2023 Sep; 13(1):15071. PubMed ID: 37699952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous symmetry-breaking of the active cluster drives the directed movement and self-sustained oscillation of symmetric rod-like passive particles.
    Lan Y; Xu M; Xie J; Yang Y; Jiang H
    Soft Matter; 2023 May; 19(17):3222-3227. PubMed ID: 37083022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.