BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37577849)

  • 1. The dilatable membrane of oleosomes (lipid droplets) allows their
    Ntone E; Rosenbaum B; Sridharan S; Willems SBJ; Moultos OA; Vlugt TJH; Meinders MBJ; Sagis LMC; Bitter JH; Nikiforidis CV
    Soft Matter; 2023 Aug; 19(33):6355-6367. PubMed ID: 37577849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emulsifying ability of oleosomes and their interfacial molecules.
    Ntone E; Yang J; Meinders MBJ; Bitter JH; Sagis LMC; Nikiforidis CV
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113476. PubMed ID: 37499547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air-water interfacial behaviour of whey protein and rapeseed oleosome mixtures.
    Yang J; Waardenburg LC; Berton-Carabin CC; Nikiforidis CV; van der Linden E; Sagis LMC
    J Colloid Interface Sci; 2021 Nov; 602():207-221. PubMed ID: 34119758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of membrane components on the oleosome lubrication properties.
    Nikolaou F; Yang J; Ji L; Scholten E; Nikiforidis CV
    J Colloid Interface Sci; 2024 Mar; 657():695-704. PubMed ID: 38071818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of encapsulating curcumin into oleosomes (Lipid Droplets).
    Vardar US; Bitter JH; Nikiforidis CV
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113819. PubMed ID: 38428208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH.
    Qi B; Ding J; Wang Z; Li Y; Ma C; Chen F; Sui X; Jiang L
    Food Res Int; 2017 Oct; 100(Pt 1):551-557. PubMed ID: 28873720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walnut (Juglans regia L.) kernel oil bodies recovered by aqueous extraction for utilization as ingredient in food emulsions: Exploration of their microstructure, composition and the effects of homogenization, pH, and salt ions on their physical stability.
    Lopez C; Rabesona H; Novales B; Weber M; Anton M
    Food Res Int; 2023 Nov; 173(Pt 1):113197. PubMed ID: 37803532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial pressure and phospholipid density at emulsion droplet interface using fluorescence microscopy.
    Delacotte J; Gourier C; Pincet F
    Colloids Surf B Biointerfaces; 2014 May; 117():545-8. PubMed ID: 24373642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of intact oleosin for stabilization and function of oleosomes.
    Maurer S; Waschatko G; Schach D; Zielbauer BI; Dahl J; Weidner T; Bonn M; Vilgis TA
    J Phys Chem B; 2013 Nov; 117(44):13872-83. PubMed ID: 24088014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering of oil droplets in o/w emulsions: Controlling cluster size and interaction strength.
    Fuhrmann PL; Sala G; Stieger M; Scholten E
    Food Res Int; 2019 Aug; 122():537-547. PubMed ID: 31229109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pectin polysaccharide contribution to oleosome extraction after wet milling of rapeseed.
    Bleibach Alpiger S; Corredig M
    Food Res Int; 2024 Jan; 175():113736. PubMed ID: 38129046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets.
    Arisawa K; Mitsudome H; Yoshida K; Sugimoto S; Ishikawa T; Fujiwara Y; Ichi I
    Biochem Biophys Res Commun; 2016 Nov; 480(4):641-647. PubMed ID: 27983976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets.
    Bacle A; Gautier R; Jackson CL; Fuchs PFJ; Vanni S
    Biophys J; 2017 Apr; 112(7):1417-1430. PubMed ID: 28402884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physics of lipid droplet nucleation, growth and budding.
    Thiam AR; Forêt L
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt A):715-22. PubMed ID: 27131867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and functions of oleosomes (oil bodies).
    Nikiforidis CV
    Adv Colloid Interface Sci; 2019 Dec; 274():102039. PubMed ID: 31683192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The behaviour of sunflower oleosomes at the interfaces.
    Karefyllakis D; Jan van der Goot A; Nikiforidis CV
    Soft Matter; 2019 Jun; 15(23):4639-4646. PubMed ID: 31144697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soybean oleosomes studied by small angle neutron scattering (SANS).
    Zielbauer BI; Jackson AJ; Maurer S; Waschatko G; Ghebremedhin M; Rogers SE; Heenan RK; Porcar L; Vilgis TA
    J Colloid Interface Sci; 2018 Nov; 529():197-204. PubMed ID: 29894938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of processing on the oxidative stability of oil bodies.
    Decker EA; Villeneuve P
    Crit Rev Food Sci Nutr; 2024; 64(17):6001-6015. PubMed ID: 36600584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous Integrated Process for the Recovery of Oil Bodies or Fatty Acid Emulsions from Sunflower Seeds.
    Cassen A; Fabre JF; Lacroux E; Cerny M; Vaca-Medina G; Mouloungui Z; Merah O; Valentin R
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soybean oleosomes behavior at the air-water interface.
    Waschatko G; Schiedt B; Vilgis TA; Junghans A
    J Phys Chem B; 2012 Sep; 116(35):10832-41. PubMed ID: 22823247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.