These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37578029)

  • 1. Activating graphite with defects and oxygenic functional groups to boost sodium-ion storage.
    Ding J; Zhou X; Gao J; Lei Z
    Nanoscale; 2023 Aug; 15(33):13760-13769. PubMed ID: 37578029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Sodium-Ion Energy Storage of Commercial Activated Carbon by Constructing Closed Pores via Ball Milling.
    Wang X; Fang Q; Zheng T; Xu Y; Dai R; Qiao Z; Ruan D; Wang Y
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study on High-Rate Performance of Graphite Nanostructures Produced by Ball Milling as Anode for Lithium-Ion Batteries.
    Ghanooni Ahmadabadi V; Rahman MM; Chen Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcrystalline Engineering of Anthracite-Based Carbon Via Salt-Assisted Ball Milling for Enhanced Sodium Storage Performance.
    Chen H; Sun N; Wang Y; Soomro RA; Xu B
    Small; 2024 Sep; ():e2406497. PubMed ID: 39285819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Flower-like MoS
    Lee YA; Jang KY; Yoo J; Yim K; Jung W; Jung KN; Yoo CY; Cho Y; Lee J; Ryu MH; Shin H; Lee K; Yoon H
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Natural Microcrystalline Graphite Performances by a Dual Modification Strategy toward Practical Application of Lithium Ion Batteries.
    Peng J; Tan H; Wu Z; Tang Y; Liu P; He L; Yang J; Hu S; Wang S; Wang X
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59552-59560. PubMed ID: 38088861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.
    Badi N; Erra AR; Hernandez FC; Okonkwo AO; Hobosyan M; Martirosyan KS
    Nanoscale Res Lett; 2014; 9(1):360. PubMed ID: 25114651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Sodium-Ion Storage Behaviors in TiNb
    Huang Y; Li X; Luo J; Wang K; Zhang Q; Qiu Y; Sun S; Liu S; Han J; Huang Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8696-8703. PubMed ID: 28218513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion.
    Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS
    Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Doped 3D Interconnected Carbon Bubbles as Anode Materials for Lithium-Ion and Sodium-Ion Storage with Excellent Performance.
    Wang B; Li Z; Zhang J; Xia Z; Yang H; Fan M; Yu Y
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7301-7307. PubMed ID: 31039889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two dimensional MnPSe
    Huang YF; Yang YC; Tseng YY; Tuan HY
    J Colloid Interface Sci; 2023 Apr; 635():336-347. PubMed ID: 36592503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FeP/C Composites as an Anode Material for K-Ion Batteries.
    Li W; Yan B; Fan H; Zhang C; Xu H; Cheng X; Li Z; Jia G; An S; Qiu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22364-22370. PubMed ID: 31187615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure regulated 3D flower-like lignin-based anode material for lithium-ion batteries and its storage kinetics.
    Wu KL; Zhang WW; Jiang TB; Wu M; Liu W; Wang HM; Hou QX
    Int J Biol Macromol; 2023 Feb; 227():146-157. PubMed ID: 36529218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes.
    Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black phosphorus stabilized by titanium disulfide and graphite via chemical bonds for high-performance lithium storage.
    Kuai H; Ji C; Ma X; Xiong X; Zhong S
    J Colloid Interface Sci; 2023 Aug; 643():1-8. PubMed ID: 37044009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse MoS
    Liu B; Li F; Li H; Zhang S; Liu J; He X; Sun Z; Yu Z; Zhang Y; Huang X; Guo F; Wang G; Jia X
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.