These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 37578051)
1. Chimeric Peptide Engineered Bioregulator for Metastatic Tumor Immunotherapy through Macrophage Polarization and Phagocytosis Restoration. Chen XY; Yan MY; Liu Q; Yu BX; Cen Y; Li SY ACS Nano; 2023 Aug; 17(16):16056-16068. PubMed ID: 37578051 [TBL] [Abstract][Full Text] [Related]
2. Engineering nanoparticles-enabled tumor-associated macrophages repolarization and phagocytosis restoration for enhanced cancer immunotherapy. Gong Y; Gao W; Zhang J; Dong X; Zhu D; Ma G J Nanobiotechnology; 2024 Jun; 22(1):341. PubMed ID: 38890636 [TBL] [Abstract][Full Text] [Related]
3. Targeted co-delivery of resiquimod and a SIRPĪ± variant by liposomes to activate macrophage immune responses for tumor immunotherapy. Jia D; Lu Y; Lv M; Wang F; Lu X; Zhu W; Wei J; Guo W; Liu R; Li G; Wang R; Li J; Yuan F J Control Release; 2023 Aug; 360():858-871. PubMed ID: 37473808 [TBL] [Abstract][Full Text] [Related]
4. Immunostimulant Hydrogel-Guided Tumor Microenvironment Reprogramming to Efficiently Potentiate Macrophage-Mediated Cellular Phagocytosis for Systemic Cancer Immunotherapy. Liang JL; Jin XK; Luo GF; Zhang SM; Huang QX; Lin YT; Deng XC; Wang JW; Chen WH; Zhang XZ ACS Nano; 2023 Sep; 17(17):17217-17232. PubMed ID: 37584451 [TBL] [Abstract][Full Text] [Related]
5. Chimeric Peptide-Engineered Self-Delivery Nanomedicine for Photodynamic-Triggered Breast Cancer Immunotherapy by Macrophage Polarization. Liu YB; Chen XY; Yu BX; Cen Y; Huang CY; Yan MY; Liu QQ; Zhang W; Li SY; Tang YZ Small; 2024 May; 20(22):e2309994. PubMed ID: 38095445 [TBL] [Abstract][Full Text] [Related]
6. M1 polarization enhances the antitumor activity of chimeric antigen receptor macrophages in solid tumors. Huo Y; Zhang H; Sa L; Zheng W; He Y; Lyu H; Sun M; Zhang L; Shan L; Yang A; Wang T J Transl Med; 2023 Mar; 21(1):225. PubMed ID: 36978075 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy. Zhang W; Liu X; Cao S; Zhang Q; Chen X; Luo W; Tan J; Xu X; Tian J; Saw PE; Luo B ACS Nano; 2023 Aug; 17(15):14424-14441. PubMed ID: 37498878 [TBL] [Abstract][Full Text] [Related]
8. Macrophage-Derived Nanosponges Adsorb Cytokines and Modulate Macrophage Polarization for Renal Cell Carcinoma Immunotherapy. Jiang Y; Nie D; Hu Z; Zhang C; Chang L; Li Y; Li Z; Hu W; Li H; Li S; Xu C; Liu S; Yang F; Wen W; Han D; Zhang K; Qin W Adv Healthc Mater; 2024 Aug; 13(20):e2400303. PubMed ID: 38647150 [TBL] [Abstract][Full Text] [Related]
9. Targeting and repolarizing M2-like tumor-associated macrophage-mediated MR imaging and tumor immunotherapy by biomimetic nanoparticles. Chong L; Jiang YW; Wang D; Chang P; Xu K; Li J J Nanobiotechnology; 2023 Oct; 21(1):401. PubMed ID: 37907987 [TBL] [Abstract][Full Text] [Related]
10. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Han S; Wang W; Wang S; Yang T; Zhang G; Wang D; Ju R; Lu Y; Wang H; Wang L Theranostics; 2021; 11(6):2892-2916. PubMed ID: 33456579 [No Abstract] [Full Text] [Related]
11. CSF1R- and SHP2-Inhibitor-Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor-Associated Macrophages. Ramesh A; Kumar S; Nandi D; Kulkarni A Adv Mater; 2019 Dec; 31(51):e1904364. PubMed ID: 31659802 [TBL] [Abstract][Full Text] [Related]
12. Engineered Bacterial Outer Membrane Vesicles as Controllable Two-Way Adaptors to Activate Macrophage Phagocytosis for Improved Tumor Immunotherapy. Feng Q; Ma X; Cheng K; Liu G; Li Y; Yue Y; Liang J; Zhang L; Zhang T; Wang X; Gao X; Nie G; Zhao X Adv Mater; 2022 Oct; 34(40):e2206200. PubMed ID: 35985666 [TBL] [Abstract][Full Text] [Related]
13. Sophisticated genetically engineered macrophages, CAR-Macs, in hitting the bull's eye for solid cancer immunotherapy approaches. Unver N Clin Exp Med; 2023 Nov; 23(7):3171-3177. PubMed ID: 37278931 [TBL] [Abstract][Full Text] [Related]
14. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. Choo YW; Kang M; Kim HY; Han J; Kang S; Lee JR; Jeong GJ; Kwon SP; Song SY; Go S; Jung M; Hong J; Kim BS ACS Nano; 2018 Sep; 12(9):8977-8993. PubMed ID: 30133260 [TBL] [Abstract][Full Text] [Related]
15. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Gunassekaran GR; Poongkavithai Vadevoo SM; Baek MC; Lee B Biomaterials; 2021 Nov; 278():121137. PubMed ID: 34560422 [TBL] [Abstract][Full Text] [Related]
16. Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Wei B; Pan J; Yuan R; Shao B; Wang Y; Guo X; Zhou S Nano Lett; 2021 May; 21(10):4231-4240. PubMed ID: 33998789 [TBL] [Abstract][Full Text] [Related]
17. Adoptive transfer of Fe Zhang Y; Liu S; Li D; He C; Wang D; Wei M; Zheng S; Li J Colloids Surf B Biointerfaces; 2023 Sep; 229():113452. PubMed ID: 37474429 [TBL] [Abstract][Full Text] [Related]
18. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. Cao M; Yan H; Han X; Weng L; Wei Q; Sun X; Lu W; Wei Q; Ye J; Cai X; Hu C; Yin X; Cao P J Immunother Cancer; 2019 Nov; 7(1):326. PubMed ID: 31775862 [TBL] [Abstract][Full Text] [Related]
19. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Esser AK; Ross MH; Fontana F; Su X; Gabay A; Fox GC; Xu Y; Xiang J; Schmieder AH; Yang X; Cui G; Scott M; Achilefu S; Chauhan J; Fletcher S; Lanza GM; Weilbaecher KN Theranostics; 2020; 10(17):7510-7526. PubMed ID: 32685002 [TBL] [Abstract][Full Text] [Related]
20. Enhancing antibody-dependent cellular phagocytosis by Re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Li H; Somiya M; Kuroda S Biomaterials; 2021 Jan; 268():120601. PubMed ID: 33338932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]