These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37578445)

  • 1. Interfacial Compatibility of Core-Shell Cellulose Nanocrystals for Improving Dynamic Covalent Adaptable Networks' Fracture Resistance in Nanohybrid Vitrimer Composites.
    Sun J; Liang M; Yin L; Rivers G; Hu G; Pan Q; Zhao B
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39786-39796. PubMed ID: 37578445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study.
    Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of well-dispersed cellulose nanocrystal reinforced biobased epoxy composites using reversibility of covalent adaptable network.
    Zhao F; Tian PX; Li YD; Weng Y; Zeng JB
    Int J Biol Macromol; 2023 Jul; 244():125202. PubMed ID: 37270117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels.
    Yang J; Han CR; Duan JF; Xu F; Sun RC
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3199-207. PubMed ID: 23534336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanocrystal functionalized aramid nanofiber reinforced epoxy nanocomposites with high strength and toughness.
    Jung J; Sodano HA
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36753754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tough and Thermostable Polybutylene Terephthalate (PBT)/Vitrimer Blend with Enhanced Interfacial Compatibility.
    Chen Z; Cui C; Jin C; Li X; Zhou Y; Shao Y; Ma L; Zhang Y; Wang T
    Macromol Rapid Commun; 2023 May; 44(10):e2200972. PubMed ID: 36913681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties.
    Lizundia E; Fortunati E; Dominici F; Vilas JL; León LM; Armentano I; Torre L; Kenny JM
    Carbohydr Polym; 2016 May; 142():105-13. PubMed ID: 26917380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitrimer Chemistry Meets Cellulose Nanofibrils: Bioinspired Nanopapers with High Water Resistance and Strong Adhesion.
    Lossada F; Guo J; Jiao D; Groeer S; Bourgeat-Lami E; Montarnal D; Walther A
    Biomacromolecules; 2019 Feb; 20(2):1045-1055. PubMed ID: 30589531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-Free Mechanochemical Recycling of Biobased Epoxy with Cellulose Nanocrystals.
    Yue L; Ke K; Amirkhosravi M; Gray TG; Manas-Zloczower I
    ACS Appl Bio Mater; 2021 May; 4(5):4176-4183. PubMed ID: 35006830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Dynamic Properties of Epoxy Vitrimers via Bioinspired Polymer-Nanoparticle Bond Dynamics.
    Feng Y; Nie Z; Chen J; Gong K; Shan Y; Dong F; Fan X; Qi S
    ACS Macro Lett; 2023 Sep; 12(9):1201-1206. PubMed ID: 37610013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.
    Kong X; Zhao L; Curtis JM
    Carbohydr Polym; 2016 Nov; 152():487-495. PubMed ID: 27516296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive Cellulose Nanocrystal-Poly(ε-Caprolactone) Nanocomposites for Bone Tissue Engineering Applications.
    Hong JK; Cooke SL; Whittington AR; Roman M
    Front Bioeng Biotechnol; 2021; 9():605924. PubMed ID: 33718336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Biodegradable Poly(3-hydroxybutyrate-
    Li F; Yu HY; Wang YY; Zhou Y; Zhang H; Yao JM; Abdalkarim SYH; Tam KC
    J Agric Food Chem; 2019 Oct; 67(39):10954-10967. PubMed ID: 31365242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of microalgae residue and isolated cellulose nanocrystals: A study on crystallization kinetics of poly(ɛ-caprolactone) bio-composites.
    Mondal K; Bhagabati P; Goud VV; Sakurai S; Katiyar V
    Int J Biol Macromol; 2021 Nov; 191():521-530. PubMed ID: 34560151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications.
    Alabiso W; Schlögl S
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose Nanocrystals: Accelerator and Reinforcing Filler for Epoxy Vitrimerization.
    Yue L; Amirkhosravi M; Ke K; Gray TG; Manas-Zloczower I
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3419-3425. PubMed ID: 33412839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Fiber-Based Vitrimer Composites: A Path toward Current Research That Is High-Performing, Useful, and Sustainable.
    Kumar V; Kuang W; Fifield LS
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites.
    Li J; Wu D
    Int J Biol Macromol; 2022 Apr; 205():587-594. PubMed ID: 35218803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple approach to reinforce hydrogels with cellulose nanocrystals.
    Yang J; Han CR; Xu F; Sun RC
    Nanoscale; 2014 Jun; 6(11):5934-43. PubMed ID: 24763379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.