BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37578470)

  • 1. Structural Metamorphoses of d-Xylose Oxetane- and Carbonyl Sulfide-Based Polymers
    Tran DK; Braaksma AN; Andras AM; Boopathi SK; Darensbourg DJ; Wooley KL
    J Am Chem Soc; 2023 Aug; 145(33):18560-18567. PubMed ID: 37578470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(monothiocarbonate)s from the Alternating and Regioselective Copolymerization of Carbonyl Sulfide with Epoxides.
    Luo M; Zhang XH; Darensbourg DJ
    Acc Chem Res; 2016 Oct; 49(10):2209-2219. PubMed ID: 27676451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity.
    Ullah Khan M; Ullah Khan S; Cao X; Usman M; Yue X; Ghaffar A; Hassan M; Zhang C; Zhang X
    Chem Asian J; 2023 Jan; 18(1):e202201050. PubMed ID: 36342176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Well-Defined Branched Sulfur-Containing Copolymers: One-Pot Copolymerization of Carbonyl Sulfide and Epoxide.
    Yue TJ; Bhat GA; Zhang WJ; Ren WM; Lu XB; Darensbourg DJ
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13633-13637. PubMed ID: 32372553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control.
    Lu XB; Ren WM; Wu GP
    Acc Chem Res; 2012 Oct; 45(10):1721-35. PubMed ID: 22857013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O/S Exchange Reaction in Synthesizing Sulfur-Containing Polymers.
    Sun Y; Zhang C; Zhang X
    Chemistry; 2024 May; ():e202401684. PubMed ID: 38802324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Chiral Sulfur-Containing Polymers: Asymmetric Copolymerization of meso-Epoxides and Carbonyl Sulfide.
    Yue TJ; Ren WM; Chen L; Gu GG; Liu Y; Lu XB
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12670-12674. PubMed ID: 30088310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metal-Free Lewis Pairs.
    Yang JL; Wu HL; Li Y; Zhang XH; Darensbourg DJ
    Angew Chem Int Ed Engl; 2017 May; 56(21):5774-5779. PubMed ID: 28444916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity.
    Zhang CJ; Wu HL; Li Y; Yang JL; Zhang XH
    Nat Commun; 2018 May; 9(1):2137. PubMed ID: 29849024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Radical Copolymerizations of Thioamides To Generate Vinyl Polymers with Degradable Thioether Bonds in the Backbones.
    Watanabe H; Kamigaito M
    J Am Chem Soc; 2023 May; 145(20):10948-10953. PubMed ID: 37079587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(Alkyl Glycidate Carbonate)s as Degradable Pressure-Sensitive Adhesives.
    Beharaj A; Ekladious I; Grinstaff MW
    Angew Chem Int Ed Engl; 2019 Jan; 58(5):1407-1411. PubMed ID: 30516857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-catalyzed copolymerizations of epoxides and carbon disulfide for high-refractive index low absorbance adhesives and plastics.
    Schwarz DB; Patil A; Singla S; Dhinojwala A; Eagan JM
    Front Chem; 2023; 11():1287528. PubMed ID: 38025056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring-Opening Terpolymerisation of Elemental Sulfur Waste with Propylene Oxide and Carbon Disulfide via Lithium Catalysis.
    Gallizioli C; Battke D; Schlaad H; Deglmann P; Plajer AJ
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202319810. PubMed ID: 38421100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Click Step-Growth Polymerization and
    Worch JC; Dove AP
    Acc Chem Res; 2022 Sep; 55(17):2355-2369. PubMed ID: 36006902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Degradable Oxygen-Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization.
    Zhang X; Xia Y; Sun Y; Zhang C; Zhang X
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202315524. PubMed ID: 38279840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Single-Site Iron(III)-Salan Catalyst for Converting COS to Sulfur-Containing Polymers.
    Gu GG; Yue TJ; Wan ZQ; Zhang R; Lu XB; Ren WM
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst Engineering Empowers the Creation of Biomass-Derived Polyesters and Polycarbonates.
    Brandolese A; Kleij AW
    Acc Chem Res; 2022 Jun; 55(12):1634-1645. PubMed ID: 35648973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(thioether)s from Closed-System One-Pot Reaction of Carbonyl Sulfide and Epoxides by Organic Bases.
    Zhang CJ; Zhu TC; Cao XH; Hong X; Zhang XH
    J Am Chem Soc; 2019 Apr; 141(13):5490-5496. PubMed ID: 30896154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.
    Tsai FT; Wang Y; Darensbourg DJ
    J Am Chem Soc; 2016 Apr; 138(13):4626-33. PubMed ID: 26974858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.