These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37578886)

  • 1. Experimental hydraulic parameters of drainage grate inlets with a horizontal outflow in the broad-crested weir mode.
    Zhuk V; Matlai I; Zavoiko B; Popadiuk I; Pavlyshyn V; Mysak I; Mysak P
    Water Sci Technol; 2023 Aug; 88(3):738-750. PubMed ID: 37578886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on the hydraulic capacity of grate inlets with supercritical surface flow conditions.
    Kemper S; Schlenkhoff A
    Water Sci Technol; 2019 May; 79(9):1717-1726. PubMed ID: 31241477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced method for estimation of flow intercepted by drainage grate inlets on roads.
    Kim JS; Kwak CJ; Jo JB
    J Environ Manage; 2021 Feb; 279():111546. PubMed ID: 33187782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of the hydraulic capacity of urban grate inlet: a global and Latin American perspective.
    Cárdenas-Quintero M; Carvajal-Serna F
    Water Sci Technol; 2021 Jun; 83(11):2575-2596. PubMed ID: 34115615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inefficiency of storm water inlets as a source of urban floods.
    Despotovic J; Plavsic J; Stefanovic N; Pavlovic D
    Water Sci Technol; 2005; 51(2):139-45. PubMed ID: 15790237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pesticide concentrations in agricultural storm drainage inlets of a small Swiss catchment.
    Schönenberger UT; Beck B; Dax A; Vogler B; Stamm C
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):43966-43983. PubMed ID: 35124778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using nutrient transport data to characterize and identify the presence of surface inlets in regions with subsurface drainage.
    Flores L; Bailey RT; Harmel RD
    J Environ Qual; 2021 Mar; 50(2):396-404. PubMed ID: 33350479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of grate sag inlets in a residential area based on return period and clogging factor.
    Almedeij J; Alsulaili A; Alhomoud J
    J Environ Manage; 2006 Apr; 79(1):38-42. PubMed ID: 16171936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the hydraulic performance of a gully under drainage conditions.
    Martins R; Leandro J; de Carvalho RF
    Water Sci Technol; 2014; 69(12):2423-30. PubMed ID: 24960003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methodologies to study the surface hydraulic behaviour of urban catchments during storm events.
    Gómez M; Macchione F; Russo B
    Water Sci Technol; 2011; 63(11):2666-73. PubMed ID: 22049763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation.
    Fach S; Sitzenfrei R; Rauch W
    Water Sci Technol; 2009; 60(12):3035-43. PubMed ID: 19955626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water for all: Towards an integrated approach to wetland conservation and flood risk reduction in a lowland catchment in Scotland.
    Vinten A; Kuhfuss L; Shortall O; Stockan J; Ibiyemi A; Pohle I; Gabriel M; Gunn I; May L
    J Environ Manage; 2019 Sep; 246():881-896. PubMed ID: 31261015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated modeling of 2D urban surface and 1D sewer hydrodynamic processes and flood risk assessment of people and vehicles.
    Dong B; Xia J; Zhou M; Li Q; Ahmadian R; Falconer RA
    Sci Total Environ; 2022 Jun; 827():154098. PubMed ID: 35218834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A field and laboratory investigation of kerb side inlet pits using four media types.
    Sapdhare H; Myers B; Beecham S; Brien C; Pezzaniti D; Johnson T
    J Environ Manage; 2019 Oct; 247():281-290. PubMed ID: 31252227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional modelling of the interactions between heavy rainfall-runoff in an urban area and flooding flows from sewer networks and rivers.
    Kouyi GL; Fraisse D; Rivière N; Guinot V; Chocat B
    Water Sci Technol; 2009; 60(4):927-34. PubMed ID: 19700831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of gully pot sediment scour behaviour under current and potential future rainfall conditions.
    Wei H; Muthanna TM; Lundy L; Viklander M
    J Environ Manage; 2021 Mar; 282():111911. PubMed ID: 33450433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of suspended sediment in a weir reach using EFDC model.
    Pak G; Mallari KJ; Baek J; Kim D; Kim H; Jung M; Kim Y; Yoon J
    Water Sci Technol; 2016; 73(7):1583-90. PubMed ID: 27054729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on air pressure variation in a horizontal pipe of single-stack drainage system.
    Yu T; Ding Q; Wang L; Zhu DZ; Shao Y
    Water Sci Technol; 2019 Jan; 79(1):114-125. PubMed ID: 30816868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling.
    Sto Domingo ND; Refsgaard A; Mark O; Paludan B
    Water Sci Technol; 2010; 62(6):1386-92. PubMed ID: 20861554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling urban flooding integrated with flow and sediment transport in drainage networks.
    Liu J; Cao Z; Li X; Wang W; Hou J; Li D; Ma Y
    Sci Total Environ; 2022 Dec; 850():158027. PubMed ID: 35973546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.