These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37578886)

  • 21. Hydraulic simulation of perforated pipe systems feeding vertical flow constructed wetlands.
    Paul U; Karpf C; Schalk T
    Water Sci Technol; 2018 Mar; 77(5-6):1431-1440. PubMed ID: 29528330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flooding flows in city crossroads: experiments and 1-D modelling.
    Rivière N; Perkins RJ; Chocat B; Lecus A
    Water Sci Technol; 2006; 54(6-7):75-82. PubMed ID: 17120636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous 'Passive' flow-proportional monitoring of drainage using a new modified Sutro weir (MSW) unit.
    Vendelboe AL; Rozemeijer J; de Jonge LW; de Jonge H
    Environ Monit Assess; 2016 Mar; 188(3):190. PubMed ID: 26914326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of settling velocity formulation in the determination of gully pot trapping efficiency: comparison between analytical and experimental data.
    Ciccarello A; Bolognesi A; Maglionico M; Artina S
    Water Sci Technol; 2012; 65(1):15-21. PubMed ID: 22173403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and numerical investigation of interactions between above and below ground drainage systems.
    Djordjević S; Saul AJ; Tabor GR; Blanksby J; Galambos I; Sabtu N; Sailor G
    Water Sci Technol; 2013; 67(3):535-42. PubMed ID: 23202557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methodology for qualitative urban flooding risk assessment.
    Leitão JP; Almeida Mdo C; Simões NE; Martins A
    Water Sci Technol; 2013; 68(4):829-38. PubMed ID: 23985513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using mathematical modelling to inform on the ability of stormwater ponds to improve the water quality of urban runoff.
    Wallis SG; Morgan CT; Lunn RJ; Heal KV
    Water Sci Technol; 2006; 53(10):229-36. PubMed ID: 16838707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of digital elevation model resolution on overland flow networks for modelling urban pluvial flooding.
    Leitão JP; Boonya-Aroonnet S; Prodanović D; Maksimović C
    Water Sci Technol; 2009; 60(12):3137-49. PubMed ID: 19955637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation.
    Freni G; La Loggia G; Notaro V
    Water Sci Technol; 2010; 61(12):2979-93. PubMed ID: 20555194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks.
    Djordjević S; Prodanović D; Maksimović C; Ivetić M; Savić D
    Water Sci Technol; 2005; 52(5):275-83. PubMed ID: 16248205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of a kerb side inlet to irrigate street trees and to improve road runoff water quality: a comparison of four media types.
    Sapdhare H; Myers B; Beecham S; Brien C
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33995-34007. PubMed ID: 30196459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of future estuarine floods in a sea level rise context.
    Lopes CL; Sousa MC; Ribeiro A; Pereira H; Pinheiro JP; Vaz L; Dias JM
    Sci Rep; 2022 May; 12(1):8083. PubMed ID: 35577878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydraulic, wash-off and sediment transport experiments in a full-scale urban drainage physical model.
    Naves J; Anta J; Suárez J; Puertas J
    Sci Data; 2020 Feb; 7(1):44. PubMed ID: 32047163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LXGB: a machine learning algorithm for estimating the discharge coefficient of pseudo-cosine labyrinth weir.
    Emami S; Emami H; Parsa J
    Sci Rep; 2023 Jul; 13(1):12304. PubMed ID: 37516816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass balance analysis and water quality model development for loading estimates from paddy fields.
    Jeon JH; Yoon CG; Ham JH; Hwang HS
    Water Sci Technol; 2005; 51(3-4):99-105. PubMed ID: 15850179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mean sea-level rise impacts on Santos Bay, Southeastern Brazil--physical modelling study.
    Alfredini P; Arasaki E; do Amaral RF
    Environ Monit Assess; 2008 Sep; 144(1-3):377-87. PubMed ID: 18204912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical and experimental study of the fundamental flow characteristics of a 3D gully box under drainage.
    Lopes P; Carvalho RF; Leandro J
    Water Sci Technol; 2017 May; 75(9-10):2204-2215. PubMed ID: 28498133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of water depths on hydraulic performance of pond wetlands].
    Guo CQ; Dong B; Liu JJ; Liu CG; Feng DP; Liu FP
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3287-95. PubMed ID: 25898628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses.
    Feyereisen GW; Francesconi W; Smith DR; Papiernik SK; Krueger ES; Wente CD
    J Environ Qual; 2015 Mar; 44(2):594-604. PubMed ID: 26023978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.