These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37579005)

  • 1. Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform.
    Wertz AE; Teptarakulkarn P; Stein RE; Moore PJ; Shafaat HS
    Biochemistry; 2023 Sep; 62(17):2622-2631. PubMed ID: 37579005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase.
    Slater JW; Shafaat HS
    J Phys Chem Lett; 2015 Sep; 6(18):3731-6. PubMed ID: 26722748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
    Slater JW; Marguet SC; Monaco HA; Shafaat HS
    J Am Chem Soc; 2018 Aug; 140(32):10250-10262. PubMed ID: 30016865
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Naughton KJ; Treviño RE; Moore PJ; Wertz AE; Dickson JA; Shafaat HS
    ACS Synth Biol; 2021 Aug; 10(8):2116-2120. PubMed ID: 34370434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme.
    Slater JW; Marguet SC; Cirino SL; Maugeri PT; Shafaat HS
    Inorg Chem; 2017 Apr; 56(7):3926-3938. PubMed ID: 28323426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interprotein Electron Transfer between FeS-Protein Nanowires and Oxygen-Tolerant NiFe Hydrogenase.
    Rengaraj S; Haddad R; Lojou E; Duraffourg N; Holzinger M; Le Goff A; Forge V
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7774-7778. PubMed ID: 28489268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase.
    Fritsch J; Siebert E; Priebe J; Zebger I; Lendzian F; Teutloff C; Friedrich B; Lenz O
    J Biol Chem; 2014 Mar; 289(11):7982-93. PubMed ID: 24448806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
    Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C
    Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular Electron Transfer Governs Photoinduced Hydrogen Evolution by Nickel-Substituted Rubredoxin: Resolving Elementary Steps in Solar Fuel Generation.
    Marguet SC; Stevenson MJ; Shafaat HS
    J Phys Chem B; 2019 Nov; 123(46):9792-9800. PubMed ID: 31608640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition.
    Lill SO; Siegbahn PE
    Biochemistry; 2009 Feb; 48(5):1056-66. PubMed ID: 19138102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of D. desulfuricans (ATCC 27774) [NiFe] hydrogenase EPR and redox properties of the native and the dihydrogen reacted states.
    Franco R; Moura I; LeGall J; Peck HD; Huynh BH; Moura JJ
    Biochim Biophys Acta; 1993 Oct; 1144(3):302-8. PubMed ID: 8399280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site.
    Adamson H; Robinson M; Wright JJ; Flanagan LA; Walton J; Elton D; Gavaghan DJ; Bond AM; Roessler MM; Parkin A
    J Am Chem Soc; 2017 Aug; 139(31):10677-10686. PubMed ID: 28697596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical investigations of the interconversions between catalytic and inhibited states of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans.
    Parkin A; Cavazza C; Fontecilla-Camps JC; Armstrong FA
    J Am Chem Soc; 2006 Dec; 128(51):16808-15. PubMed ID: 17177431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c3.
    Matias PM; Soares CM; Saraiva LM; Coelho R; Morais J; Le Gall J; Carrondo MA
    J Biol Inorg Chem; 2001 Jan; 6(1):63-81. PubMed ID: 11191224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two open reading frames (ORFs) identified near the hydrogenase structural genes in Azotobacter vinelandii, the first ORF may encode for a polypeptide similar to rubredoxins.
    Chen JC; Mortenson LE
    Biochim Biophys Acta; 1992 May; 1131(1):122-4. PubMed ID: 1581355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and tuning the catalytic bias of hydrogenase.
    Abou Hamdan A; Dementin S; Liebgott PP; Gutierrez-Sanz O; Richaud P; De Lacey AL; Rousset M; Bertrand P; Cournac L; Léger C
    J Am Chem Soc; 2012 May; 134(20):8368-71. PubMed ID: 22540997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase.
    Dementin S; Burlat B; De Lacey AL; Pardo A; Adryanczyk-Perrier G; Guigliarelli B; Fernandez VM; Rousset M
    J Biol Chem; 2004 Mar; 279(11):10508-13. PubMed ID: 14688251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus.
    Moreno C; Franco R; Moura I; Le Gall J; Moura JJ
    Eur J Biochem; 1993 Nov; 217(3):981-9. PubMed ID: 8223656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
    Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.