BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37579082)

  • 1. Endoproteolysis of Oligopeptide-Based Coacervates for Enzymatic Modeling.
    Jin Z; Ling C; Yim W; Chang YC; He T; Li K; Zhou J; Cheng Y; Li Y; Yeung J; Wang R; Fajtová P; Amer L; Mattoussi H; O'Donoghue AJ; Jokerst JV
    ACS Nano; 2023 Sep; 17(17):16980-16992. PubMed ID: 37579082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.
    Wang J; Abbas M; Huang Y; Wang J; Li Y
    Commun Chem; 2023 Nov; 6(1):243. PubMed ID: 37935871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Crystal Coacervates Composed of Short Double-Stranded DNA and Cationic Peptides.
    Fraccia TP; Jia TZ
    ACS Nano; 2020 Nov; 14(11):15071-15082. PubMed ID: 32852935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Transformation from Membrane-less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Appelhans D; Zhou Y; Zhang K; Moreno S; Temme A; Voit B
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis.
    Cao S; Ivanov T; Heuer J; Ferguson CTJ; Landfester K; Caire da Silva L
    Nat Commun; 2024 Jan; 15(1):39. PubMed ID: 38169470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequestration within peptide coacervates improves the fluorescence intensity, kinetics, and limits of detection of dye-based DNA biosensors.
    Green CM; Sementa D; Mathur D; Melinger JS; Deshpande P; Elbaum-Garfinkle S; Medintz IL; Ulijn RV; Díaz SA
    Commun Chem; 2024 Feb; 7(1):49. PubMed ID: 38424154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Responsive Peptide-Nucleotide Coacervates.
    Lu T; Nakashima KK; Spruijt E
    J Phys Chem B; 2021 Apr; 125(12):3080-3091. PubMed ID: 33757284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates.
    Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY
    Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives.
    Liu X; Ma Z; Nie J; Fang J; Li W
    Biomacromolecules; 2022 Mar; 23(3):1009-1019. PubMed ID: 34964608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Disassembly and Cargo Release of Phase-Separated Peptide Coacervates with Native Mass Spectrometry.
    Cerrato CP; Leppert A; Sun Y; Lane DP; Arsenian-Henriksson M; Miserez A; Landreh M
    Anal Chem; 2023 Jul; 95(29):10869-10872. PubMed ID: 37439740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid Membrane Formation Templated by Coacervate Droplets.
    Pir Cakmak F; Marianelli AM; Keating CD
    Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation and hemostatic properties of polyphosphate coacervates.
    Momeni A; Filiaggi MJ
    Acta Biomater; 2016 Sep; 41():328-41. PubMed ID: 27265150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-Exchange Triggered Solidification of Peptide/POM Coacervates for Enhancing the On-Site Underwater Adhesion.
    Ji F; Li Y; Zhao H; Wang X; Li W
    Molecules; 2024 Feb; 29(3):. PubMed ID: 38338427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Control of Functional Coacervates in Synthetic Cells.
    Nair KS; Radhakrishnan S; Bajaj H
    ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.