BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37579138)

  • 1. Near-infrared voltage-sensitive dyes based on chromene donor.
    Yan P; Acker CD; Biasci V; Judge G; Monroe A; Sacconi L; Loew LM
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2305093120. PubMed ID: 37579138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of new, long-wavelength, voltage-sensitive dyes in the heart.
    Salama G; Choi BR; Azour G; Lavasani M; Tumbev V; Salzberg BM; Patrick MJ; Ernst LA; Waggoner AS
    J Membr Biol; 2005 Nov; 208(2):125-40. PubMed ID: 16645742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium.
    Matiukas A; Mitrea BG; Qin M; Pertsov AM; Shvedko AG; Warren MD; Zaitsev AV; Wuskell JP; Wei MD; Watras J; Loew LM
    Heart Rhythm; 2007 Nov; 4(11):1441-51. PubMed ID: 17954405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palette of fluorinated voltage-sensitive hemicyanine dyes.
    Yan P; Acker CD; Zhou WL; Lee P; Bollensdorff C; Negrean A; Lotti J; Sacconi L; Antic SD; Kohl P; Mansvelder HD; Pavone FS; Loew LM
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20443-8. PubMed ID: 23169660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action spectra of electrochromic voltage-sensitive dyes in an intact excitable tissue.
    Foley J; Muschol M
    J Biomed Opt; 2008; 13(6):064015. PubMed ID: 19123661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites.
    Zhou WL; Yan P; Wuskell JP; Loew LM; Antic SD
    J Neurosci Methods; 2007 Aug; 164(2):225-39. PubMed ID: 17560661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New near-infrared optical probes of cardiac electrical activity.
    Matiukas A; Mitrea BG; Pertsov AM; Wuskell JP; Wei MD; Watras J; Millard AC; Loew LM
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2633-43. PubMed ID: 16399869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared.
    Fisher JA; Salzberg BM
    Adv Exp Med Biol; 2015; 859():427-53. PubMed ID: 26238063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart.
    Martišienė I; Mačianskienė R; Treinys R; Navalinskas A; Almanaitytė M; Karčiauskas D; Kučinskas A; Grigalevičiūtė R; Zigmantaitė V; Benetis R; Jurevičius J
    Biophys J; 2016 Feb; 110(3):723-732. PubMed ID: 26840736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon excitation of di-4-ANEPPS for optical recording of action potentials in rabbit heart.
    Dumas JH; Knisley SB
    Ann Biomed Eng; 2005 Dec; 33(12):1802-7. PubMed ID: 16389528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon excitation of FluoVolt allows improved interrogation of transmural electrophysiological function in the intact mouse heart.
    Salerno S; Garten K; Smith GL; Stølen T; Kelly A
    Prog Biophys Mol Biol; 2020 Aug; 154():11-20. PubMed ID: 31492464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiology, Unplugged: Imaging Membrane Potential with Fluorescent Indicators.
    Liu P; Miller EW
    Acc Chem Res; 2020 Jan; 53(1):11-19. PubMed ID: 31834772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tethered Bichromophoric Fluorophore Quencher Voltage Sensitive Dyes.
    Yan P; Acker CD; Loew LM
    ACS Sens; 2018 Dec; 3(12):2621-2628. PubMed ID: 30474375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts.
    Tai DC; Caldwell BJ; LeGrice IJ; Hooks DA; Pullan AJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H985-93. PubMed ID: 15130885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-sensitive dye imaging of population neuronal activity in cortical tissue.
    Jin W; Zhang RJ; Wu JY
    J Neurosci Methods; 2002 Mar; 115(1):13-27. PubMed ID: 11897360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear optical potentiometric dyes optimized for imaging with 1064-nm light.
    Teisseyre TZ; Millard AC; Yan P; Wuskell JP; Wei MD; Lewis A; Loew LM
    J Biomed Opt; 2007; 12(4):044001. PubMed ID: 17867805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter.
    Gonzalez MA; Walker AS; Cao KJ; Lazzari-Dean JR; Settineri NS; Kong EJ; Kramer RH; Miller EW
    J Am Chem Soc; 2021 Feb; 143(5):2304-2314. PubMed ID: 33501825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing.
    Huang YL; Walker AS; Miller EW
    J Am Chem Soc; 2015 Aug; 137(33):10767-76. PubMed ID: 26237573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.