These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37579138)

  • 61. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods.
    Bernus O; Wellner M; Mironov SF; Pertsov AM
    Phys Med Biol; 2005 Jan; 50(2):215-29. PubMed ID: 15742940
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optical mapping of cardiac electromechanics in beating in vivo hearts.
    Zhang H; Patton HN; Wood GA; Yan P; Loew LM; Acker CD; Walcott GP; Rogers JM
    Biophys J; 2023 Nov; 122(21):4207-4219. PubMed ID: 37775969
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge.
    Kuhn B; Fromherz P; Denk W
    Biophys J; 2004 Jul; 87(1):631-9. PubMed ID: 15240496
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns.
    Hyatt CJ; Mironov SF; Wellner M; Berenfeld O; Popp AK; Weitz DA; Jalife J; Pertsov AM
    Biophys J; 2003 Oct; 85(4):2673-83. PubMed ID: 14507730
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Voltage-sensitive fluorescence of amphiphilic hemicyanine dyes in neuron membrane.
    Fromherz P; Müller CO
    Biochim Biophys Acta; 1993 Aug; 1150(2):111-22. PubMed ID: 8347665
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Fast and aimed delivery of voltage-sensitive dyes to mammalian brain slices by biolistic techniques].
    Aseev NA; Nikitin ES; Roshchin MV; Ierusalimskiĭ VN; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(1):100-7. PubMed ID: 22567991
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fluorescence emission spectral shift measurements of membrane potential in single cells.
    Kao WY; Davis CE; Kim YI; Beach JM
    Biophys J; 2001 Aug; 81(2):1163-70. PubMed ID: 11463657
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
    Bachtel AD; Gray RA; Stohlman JM; Bourgeois EB; Pollard AE; Rogers JM
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2120-6. PubMed ID: 21536528
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Imaging activity of neuronal populations with new long-wavelength voltage-sensitive dyes.
    Kee MZ; Wuskell JP; Loew LM; Augustine GJ; Sekino Y
    Brain Cell Biol; 2008 Dec; 36(5-6):157-72. PubMed ID: 19219551
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.
    Fink AE; Bender KJ; Trussell LO; Otis TS; DiGregorio DA
    PLoS One; 2012; 7(8):e41434. PubMed ID: 22870221
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse.
    Lou S; Adam Y; Weinstein EN; Williams E; Williams K; Parot V; Kavokine N; Liberles S; Madisen L; Zeng H; Cohen AE
    J Neurosci; 2016 Oct; 36(43):11059-11073. PubMed ID: 27798186
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts.
    Grandy TH; Greenfield SA; Devonshire IM
    J Neurophysiol; 2012 Dec; 108(11):2931-45. PubMed ID: 22972958
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.
    Han Z; Jin L; Chen F; Loturco JJ; Cohen LB; Bondar A; Lazar J; Pieribone VA
    PLoS One; 2014; 9(11):e113873. PubMed ID: 25419571
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mapping action potentials and calcium transients simultaneously from the intact heart.
    Laurita KR; Singal A
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2053-60. PubMed ID: 11299206
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Image-based motion correction for optical mapping of cardiac electrical activity.
    Khwaounjoo P; Rutherford SL; Svrcek M; LeGrice IJ; Trew ML; Smaill BH
    Ann Biomed Eng; 2015 May; 43(5):1235-46. PubMed ID: 25384833
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart.
    Salama G; Morad M
    Science; 1976 Feb; 191(4226):485-7. PubMed ID: 1082169
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fluorescence imaging of local membrane electric fields during the excitation of single neurons in culture.
    Gogan P; Schmiedel-Jakob I; Chitti Y; Tyc-Dumont S
    Biophys J; 1995 Aug; 69(2):299-310. PubMed ID: 8527643
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe.
    Jin L; Han Z; Platisa J; Wooltorton JR; Cohen LB; Pieribone VA
    Neuron; 2012 Sep; 75(5):779-85. PubMed ID: 22958819
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.