These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37579252)

  • 1. Hydrophobic Gating and Spatial Confinement in Hierarchically Organized Block Copolymer-Nanopore Electrode Arrays for Electrochemical Biosensing of 4-Ethyl Phenol.
    Reitemeier J; Baek S; Bohn PW
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39707-39715. PubMed ID: 37579252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Gating in Nanopore Electrode Arrays with Hierarchically Organized pH-Responsive Block Copolymer Membranes.
    Baek S; Kwon SR; Fu K; Bohn PW
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55116-55124. PubMed ID: 33222437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential-induced wetting and dewetting in pH-responsive block copolymer membranes for mass transport control.
    Kwon SR; Baek S; Bohn PW
    Faraday Discuss; 2022 Apr; 233(0):283-294. PubMed ID: 34904977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Cycling in Individually Encapsulated Attoliter-Volume Nanopores.
    Kwon SR; Fu K; Han D; Bohn PW
    ACS Nano; 2018 Dec; 12(12):12923-12931. PubMed ID: 30525454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of aldehydes from degradation of lipid nanoparticle formulations using a hierarchically-organized nanopore electrochemical biosensor.
    Reitemeier J; Metro J; Bohn PW
    Biosens Bioelectron; 2024 Oct; 261():116457. PubMed ID: 38850733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries.
    Fu K; Kwon SR; Han D; Bohn PW
    Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Nafion-Coated Nanopore Electrode Arrays as Redox-Cycling-Based Electrochemical Diodes.
    Fu K; Han D; Kwon SR; Bohn PW
    ACS Nano; 2018 Sep; 12(9):9177-9185. PubMed ID: 30080388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays.
    Kwon SR; Baek S; Fu K; Bohn PW
    Small; 2020 May; 16(18):e1907249. PubMed ID: 32270930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actively Controllable Solid-Phase Microextraction in a Hierarchically Organized Block Copolymer-Nanopore Electrode Array Sensor for Charge-Selective Detection of Bacterial Metabolites.
    Jia J; Kwon SR; Baek S; Sundaresan V; Cao T; Cutri AR; Fu K; Roberts B; Shrout JD; Bohn PW
    Anal Chem; 2021 Nov; 93(43):14481-14488. PubMed ID: 34661405
    [No Abstract]   [Full Text] [Related]  

  • 10. Voltage-Gated Nanoparticle Transport and Collisions in Attoliter-Volume Nanopore Electrode Arrays.
    Fu K; Han D; Crouch GM; Kwon SR; Bohn PW
    Small; 2018 May; 14(18):e1703248. PubMed ID: 29377558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.
    Park S; Singh A; Kim S; Yang H
    Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion selective redox cycling in zero-dimensional nanopore electrode arrays at low ionic strength.
    Fu K; Han D; Ma C; Bohn PW
    Nanoscale; 2017 Apr; 9(16):5164-5171. PubMed ID: 28393950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.
    Ying YL; Hu YX; Gao R; Yu RJ; Gu Z; Lee LP; Long YT
    J Am Chem Soc; 2018 Apr; 140(16):5385-5392. PubMed ID: 29529376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays.
    Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW
    Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tyrosinase-Responsive Nonenzymatic Redox Cycling for Amplified Electrochemical Immunosensing of Protein.
    Akanda MR; Ju H
    Anal Chem; 2016 Oct; 88(19):9856-9861. PubMed ID: 27595158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels.
    Lu J; Jiang Y; Yu P; Jiang W; Mao L
    Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic Tyrosinase Substrate with a Formal Potential Lower than That of Phenol to Obtain a Sensitive Electrochemical Immunosensor.
    Park S; Kwak DE; Haque AJ; Lee NS; Yoon YH; Yang H
    ACS Sens; 2022 Mar; 7(3):790-796. PubMed ID: 35195397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes.
    Wang J; Zhou Y; Jiang L
    ACS Nano; 2021 Dec; 15(12):18974-19013. PubMed ID: 34846138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing.
    Lacina K; Věžník J; Sopoušek J; Farka Z; Lacinová V; Skládal P
    Bioelectrochemistry; 2023 Feb; 149():108308. PubMed ID: 36356443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integrated Redox Cycling for Electrochemical Enzymatic Signal Enhancement.
    Akanda MR; Ju H
    Anal Chem; 2017 Dec; 89(24):13480-13486. PubMed ID: 29164851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.