These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37579608)

  • 1. Enhanced hydrophobic interaction between fish (Cyprinus carpio L.) scale gelatin and curcumin: Mechanism study.
    Li H; Wan Mustapha WA; Tian G; Dong N; Zhao F; Zhang X; Long D; Liu J
    Food Chem; 2024 Jan; 431():137102. PubMed ID: 37579608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled nanoparticles of acid-induced fish (
    Li H; Mustapha WAW; Liu J; Zhang X
    Food Chem X; 2024 Mar; 21():101230. PubMed ID: 38426076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curcumin-Loaded Self-Assembly Constructed by Octenylsuccinate Fish (
    Yu X; Li H; Wan AWM; Ren T; Lei Z; Liu J
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Antioxidant Peptides in Enzymatic Hydrolysates of Carp (
    Tkaczewska J; Bukowski M; Mak P
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles.
    Xu P; Qian Y; Wang R; Chen Z; Wang T
    Food Chem; 2022 Sep; 387():132906. PubMed ID: 35413554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate.
    Hosseini SF; Ramezanzade L; Nikkhah M
    Int J Biol Macromol; 2017 Dec; 105(Pt 2):1455-1463. PubMed ID: 28552724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the potential use of a carp (Cyprinus carpio) skin gelatine hydrolysate as an antioxidant component.
    Tkaczewska J; Jamróz E; Kulawik P; Morawska M; Szczurowska K
    Food Funct; 2019 Feb; 10(2):1038-1048. PubMed ID: 30706918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility.
    Yuan Y; Huang J; He S; Ma M; Wang D; Xu Y
    Food Funct; 2021 Jul; 12(13):5719-5730. PubMed ID: 34115089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of gelatin hydrolysates from grass carp (Ctenopharyngodon idellus) scales by Maillard reaction: Antioxidant activity and volatile compounds.
    Chen K; Yang X; Huang Z; Jia S; Zhang Y; Shi J; Hong H; Feng L; Luo Y
    Food Chem; 2019 Oct; 295():569-578. PubMed ID: 31174797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High dispersity, stability and bioaccessibility of curcumin by assembling with deamidated zein peptide.
    Li L; Yao P
    Food Chem; 2020 Jul; 319():126577. PubMed ID: 32172044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin.
    Yang T; Yang H; Fan Y; Li B; Hou H
    Int J Biol Macromol; 2018 Oct; 118(Pt A):124-131. PubMed ID: 29908276
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T
    J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin.
    Wang P; Li Y; Zhang C; Feng F; Zhang H
    Food Chem; 2020 Mar; 308():125599. PubMed ID: 31648098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The construction of enzymolyzed α-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds.
    Hu Y; Bao C; Li D; You L; Du Y; Liu B; Li X; Ren F; Li Y
    Food Funct; 2019 Dec; 10(12):8263-8272. PubMed ID: 31720654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing loading, cellular uptake, and toxicity of gelatin-pluronic nanocomposite for drug delivery: Influence of HLB of pluronic.
    Das RP; Gandhi VV; Singh BG; Kunwar A
    J Biomed Mater Res A; 2022 Feb; 110(2):304-315. PubMed ID: 34355509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional and ameliorative effects of dietary curcumin and its nano-silica and nano-zeolite encapsulated forms on growth, biochemical and fatty acid profile of common carp (Cyprinus carpio).
    Moradi S; Ashouri S; Pirani F; Johari SA; Kim HP; Yu IJ; Ghaderi E
    Fish Physiol Biochem; 2023 Aug; 49(4):599-612. PubMed ID: 37306785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.
    Yan JK; Qiu WY; Wang YY; Wu JY
    J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin.
    Luo L; Wu Y; Liu C; Zou Y; Huang L; Liang Y; Ren J; Liu Y; Lin Q
    Food Chem; 2021 Jan; 336():127669. PubMed ID: 32758804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The self-assembled zein hydrolysate-curcumin nanocomplex: improvement on the stability and sustainable release of curcumin.
    Lei L; Liang XY; Su CR; Nag A; Yang XQ; Yuan Y
    J Sci Food Agric; 2022 Oct; 102(13):5729-5737. PubMed ID: 35396741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced anti-cancer activity by curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells.
    Teong B; Lin CY; Chang SJ; Niu GC; Yao CH; Chen IF; Kuo SM
    J Mater Sci Mater Med; 2015 Jan; 26(1):5357. PubMed ID: 25595721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.