These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37579822)

  • 1. Biodegradation mechanism of chlortetracycline by a novel fungal Aspergillus sp. LS-1.
    He W; Jiang R; Li S; Zhang M; Zhang T; Zhu X; Wang X
    Chemosphere; 2023 Nov; 340():139792. PubMed ID: 37579822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of chlortetracycline by Bacillus cereus LZ01: Performance, degradative pathway and possible genes involved.
    Zhang S; Wang J
    J Hazard Mater; 2022 Jul; 434():128941. PubMed ID: 35462123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective degradation of Chlortetracycline using dual bio catalyst.
    Al-Dhabi NA; Arasu MV
    Environ Res; 2022 Mar; 204(Pt C):112339. PubMed ID: 34740624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii.
    Zhao F; Zhang D; Xu C; Liu J; Shen C
    Ecotoxicol Environ Saf; 2020 Jun; 196():110552. PubMed ID: 32259759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of chlortetracycline biodegradation with Trichoderma harzianum LJ245 and its spore-producing mutants using co-metabolism.
    Li Y; Gong Y; Zhao H; Gu J; Wang Z; He X
    Biodegradation; 2020 Dec; 31(4-6):265-273. PubMed ID: 32949331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced biodegradation of chlortetracycline via a microalgae-bacteria consortium.
    Wang Y; He Y; Li X; Nagarajan D; Chang JS
    Bioresour Technol; 2022 Jan; 343():126149. PubMed ID: 34673189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of microbial interactions in activated sludge to chlortetracycline.
    He W; Fan J; Ya T; Zhang M; Zhang T; Wang X
    Environ Pollut; 2022 Nov; 312():120035. PubMed ID: 36030958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation mechanism of tetracycline (TEC) by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics.
    Shao S; Hu Y; Cheng J; Chen Y
    Ecotoxicol Environ Saf; 2019 Dec; 185():109676. PubMed ID: 31539769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient biodegradation of chlortetracycline in high concentration from strong-acidity pharmaceutical residue with degrading fungi.
    Li Y; Chen H; Wang Y; Yang Z; Zhang H
    J Hazard Mater; 2022 Feb; 424(Pt D):127671. PubMed ID: 34799176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil.
    Fang H; Han Y; Yin Y; Pan X; Yu Y
    Chemosphere; 2014 Feb; 96():51-6. PubMed ID: 23948606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced chlortetracycline removal by iron oxide modified spent coffee grounds biochar and persulfate system.
    Wang Y; Tian Q; Yang G; Li X; Du W; Leong YK; Chang JS
    Chemosphere; 2022 Aug; 301():134654. PubMed ID: 35452644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ozonation of chlortetracycline in the aqueous phase: Degradation intermediates and pathway confirmed by NMR.
    Khan MH; Jung JY
    Chemosphere; 2016 Jun; 152():31-8. PubMed ID: 26963235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of antibiotic resistance genes in soils with ten successive treatments of chlortetracycline and ciprofloxacin.
    Han L; Cai L; Zhang H; Long Z; Yu Y; Fang H
    Environ Pollut; 2019 Oct; 253():152-160. PubMed ID: 31306822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin.
    Selvam A; Zhao Z; Wong JW
    Bioresour Technol; 2012 Dec; 126():412-7. PubMed ID: 22261658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure.
    Yin F; Dong H; Ji C; Tao X; Chen Y
    Waste Manag; 2016 Oct; 56():540-6. PubMed ID: 27432548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments.
    Fang H; Han L; Cui Y; Xue Y; Cai L; Yu Y
    Sci Total Environ; 2016 Dec; 572():1203-1212. PubMed ID: 27524727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of chlortetracycline antibiotics during anaerobic degradation of cattle manure.
    Lee C; Jeong S; Ju M; Kim JY
    J Hazard Mater; 2020 Mar; 386():121894. PubMed ID: 31896000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determinants of resistance to chlortetracycline and other antibiotics in chlortetracycline-producing strain of Streptomyces aureofaciens].
    Chinenova TA; Biriukova IV; Voeĭkova TA; Emel'ianova LK; Klochkova OA; Sezonov GV; Lomovskaia ND
    Genetika; 1990 Apr; 26(4):636-47. PubMed ID: 2115485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of In-Feed Chlortetracycline Prophylaxis in Beef Cattle on Animal Health and Antimicrobial-Resistant Escherichia coli.
    Agga GE; Schmidt JW; Arthur TM
    Appl Environ Microbiol; 2016 Dec; 82(24):7197-7204. PubMed ID: 27736789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila.
    Li W; Ali F; Cai Q; Yao Z; Sun L; Lin W; Lin X
    J Proteomics; 2018 Feb; 172():143-151. PubMed ID: 28986269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.