These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37580126)
1. Discovering pathways through ribozyme fitness landscapes using information theoretic quantification of epistasis. Charest N; Shen Y; Lai YC; Chen IA; Shea JE RNA; 2023 Nov; 29(11):1644-1657. PubMed ID: 37580126 [TBL] [Abstract][Full Text] [Related]
2. Dynamic RNA Fitness Landscapes of a Group I Ribozyme during Changes to the Experimental Environment. Peri G; Gibard C; Shults NH; Crossin K; Hayden EJ Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35020916 [TBL] [Abstract][Full Text] [Related]
3. Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA. Pressman AD; Liu Z; Janzen E; Blanco C; Müller UF; Joyce GF; Pascal R; Chen IA J Am Chem Soc; 2019 Apr; 141(15):6213-6223. PubMed ID: 30912655 [TBL] [Abstract][Full Text] [Related]
4. Environmental change exposes beneficial epistatic interactions in a catalytic RNA. Hayden EJ; Wagner A Proc Biol Sci; 2012 Sep; 279(1742):3418-25. PubMed ID: 22719036 [TBL] [Abstract][Full Text] [Related]
5. Fitness Landscapes and Evolution of Catalytic RNA. Saha R; Vázquez-Salazar A; Nandy A; Chen IA Annu Rev Biophys; 2024 Jul; 53(1):109-125. PubMed ID: 39013026 [TBL] [Abstract][Full Text] [Related]
6. Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning. Rotrattanadumrong R; Yokobayashi Y Nat Commun; 2022 Aug; 13(1):4847. PubMed ID: 35977956 [TBL] [Abstract][Full Text] [Related]
7. Predicting higher-order mutational effects in an RNA enzyme by machine learning of high-throughput experimental data. Beck JD; Roberts JM; Kitzhaber JM; Trapp A; Serra E; Spezzano F; Hayden EJ Front Mol Biosci; 2022; 9():893864. PubMed ID: 36046603 [TBL] [Abstract][Full Text] [Related]
8. Analysis of epistatic interactions and fitness landscapes using a new geometric approach. Beerenwinkel N; Pachter L; Sturmfels B; Elena SF; Lenski RE BMC Evol Biol; 2007 Apr; 7():60. PubMed ID: 17433106 [TBL] [Abstract][Full Text] [Related]
9. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. Curtis EA; Bartel DP RNA; 2013 Aug; 19(8):1116-28. PubMed ID: 23798664 [TBL] [Abstract][Full Text] [Related]
10. Protocell Effects on RNA Folding, Function, and Evolution. Saha R; Choi JA; Chen IA Acc Chem Res; 2024 Aug; 57(15):2058-2066. PubMed ID: 39005057 [TBL] [Abstract][Full Text] [Related]
11. On the (un)predictability of a large intragenic fitness landscape. Bank C; Matuszewski S; Hietpas RT; Jensen JD Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14085-14090. PubMed ID: 27864516 [TBL] [Abstract][Full Text] [Related]
12. Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations. Ferretti L; Schmiegelt B; Weinreich D; Yamauchi A; Kobayashi Y; Tajima F; Achaz G J Theor Biol; 2016 May; 396():132-43. PubMed ID: 26854875 [TBL] [Abstract][Full Text] [Related]