These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37580126)

  • 1. Discovering pathways through ribozyme fitness landscapes using information theoretic quantification of epistasis.
    Charest N; Shen Y; Lai YC; Chen IA; Shea JE
    RNA; 2023 Nov; 29(11):1644-1657. PubMed ID: 37580126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic RNA Fitness Landscapes of a Group I Ribozyme during Changes to the Experimental Environment.
    Peri G; Gibard C; Shults NH; Crossin K; Hayden EJ
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35020916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA.
    Pressman AD; Liu Z; Janzen E; Blanco C; Müller UF; Joyce GF; Pascal R; Chen IA
    J Am Chem Soc; 2019 Apr; 141(15):6213-6223. PubMed ID: 30912655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental change exposes beneficial epistatic interactions in a catalytic RNA.
    Hayden EJ; Wagner A
    Proc Biol Sci; 2012 Sep; 279(1742):3418-25. PubMed ID: 22719036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitness Landscapes and Evolution of Catalytic RNA.
    Saha R; Vázquez-Salazar A; Nandy A; Chen IA
    Annu Rev Biophys; 2024 Jul; 53(1):109-125. PubMed ID: 39013026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning.
    Rotrattanadumrong R; Yokobayashi Y
    Nat Commun; 2022 Aug; 13(1):4847. PubMed ID: 35977956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting higher-order mutational effects in an RNA enzyme by machine learning of high-throughput experimental data.
    Beck JD; Roberts JM; Kitzhaber JM; Trapp A; Serra E; Spezzano F; Hayden EJ
    Front Mol Biosci; 2022; 9():893864. PubMed ID: 36046603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
    Beerenwinkel N; Pachter L; Sturmfels B; Elena SF; Lenski RE
    BMC Evol Biol; 2007 Apr; 7():60. PubMed ID: 17433106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme.
    Curtis EA; Bartel DP
    RNA; 2013 Aug; 19(8):1116-28. PubMed ID: 23798664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocell Effects on RNA Folding, Function, and Evolution.
    Saha R; Choi JA; Chen IA
    Acc Chem Res; 2024 Aug; 57(15):2058-2066. PubMed ID: 39005057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the (un)predictability of a large intragenic fitness landscape.
    Bank C; Matuszewski S; Hietpas RT; Jensen JD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14085-14090. PubMed ID: 27864516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
    Ferretti L; Schmiegelt B; Weinreich D; Yamauchi A; Kobayashi Y; Tajima F; Achaz G
    J Theor Biol; 2016 May; 396():132-43. PubMed ID: 26854875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative Epistasis in Experimental RNA Fitness Landscapes.
    Bendixsen DP; Østman B; Hayden EJ
    J Mol Evol; 2017 Dec; 85(5-6):159-168. PubMed ID: 29127445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of epistasis on simple fitness landscapes.
    Fraïsse C; Welch JJ
    Biol Lett; 2019 Apr; 15(4):20180881. PubMed ID: 31014191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistatic interactions determine the mutational pathways and coexistence of lineages in clonal Escherichia coli populations.
    Maharjan RP; Ferenci T
    Evolution; 2013 Sep; 67(9):2762-8. PubMed ID: 24033182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Phenotypes Underlie Epistasis of Fitness Effects.
    Sackman AM; Rokyta DR
    Genetics; 2018 Jan; 208(1):339-348. PubMed ID: 29113978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Mutational Analysis of a Twister Ribozyme.
    Kobori S; Yokobayashi Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10354-7. PubMed ID: 27461281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
    Schenk MF; Szendro IG; Salverda ML; Krug J; de Visser JA
    Mol Biol Evol; 2013 Aug; 30(8):1779-87. PubMed ID: 23676768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster partitions and fitness landscapes of the Drosophila fly microbiome.
    Eble H; Joswig M; Lamberti L; Ludington WB
    J Math Biol; 2019 Aug; 79(3):861-899. PubMed ID: 31101975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic survey of an intragenic epistatic landscape.
    Bank C; Hietpas RT; Jensen JD; Bolon DN
    Mol Biol Evol; 2015 Jan; 32(1):229-38. PubMed ID: 25371431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.