BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37580375)

  • 1. Bioinspired preactivation reflex increases robustness of walking on rough terrain.
    Bunz EK; Haeufle DFB; Remy CD; Schmitt S
    Sci Rep; 2023 Aug; 13(1):13219. PubMed ID: 37580375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating anticipatory control strategies for their capability to cope with step-down perturbations in computer simulations of human walking.
    Schreff L; Haeufle DFB; Vielemeyer J; Müller R
    Sci Rep; 2022 Jun; 12(1):10075. PubMed ID: 35710689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial reflex improves the perturbation-resistance of a human walking simulator.
    Yu W; Ikemoto Y
    Med Biol Eng Comput; 2007 Nov; 45(11):1095-104. PubMed ID: 17909875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlimb communication following unexpected changes in treadmill velocity during human walking.
    Stevenson AJ; Geertsen SS; Sinkjær T; Nielsen JB; Mrachacz-Kersting N
    J Neurophysiol; 2015 May; 113(9):3151-8. PubMed ID: 25761957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 May; 43(7):1401-7. PubMed ID: 20171638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast muscle responses to an unexpected foot-in-hole scenario, evoked in the context of prior knowledge of the potential perturbation.
    Shinya M; Oda S
    Exp Brain Res; 2010 Jun; 203(2):437-46. PubMed ID: 20414644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects.
    Mueller J; Engel T; Mueller S; Stoll J; Baur H; Mayer F
    PLoS One; 2017; 12(3):e0174034. PubMed ID: 28319133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interindividual differences in H reflex modulation during normal walking.
    Simonsen EB; Dyhre-Poulsen P; Alkjaer T; Aagaard P; Magnusson SP
    Exp Brain Res; 2002 Jan; 142(1):108-15. PubMed ID: 11797088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective bilateral activation of leg muscles after cutaneous nerve stimulation during backward walking.
    Hoogkamer W; Massaad F; Jansen K; Bruijn SM; Duysens J
    J Neurophysiol; 2012 Oct; 108(7):1933-41. PubMed ID: 22773779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical perturbations of human gait: organisation and adaptation of leg muscle responses.
    Bachmann V; Müller R; van Hedel HJ; Dietz V
    Exp Brain Res; 2008 Mar; 186(1):123-30. PubMed ID: 18305933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of cutaneous stumble correction when tripping is part of the locomotor environment.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2008 Jun; 99(6):2789-97. PubMed ID: 18417633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuromusculoskeletal modelling approach to bilateral hip mechanics due to unexpected lateral perturbations during overground walking.
    Zhu Y; Huang J; Ma X; Chen WM
    BMC Musculoskelet Disord; 2023 Oct; 24(1):775. PubMed ID: 37784076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a frontal plane gait perturbation bout on knee biomechanics and muscle activation in older adults and individuals with knee osteoarthritis.
    Rutherford D; Baker M; Urquhart N; Stanish W
    Clin Biomech (Bristol, Avon); 2022 Feb; 92():105574. PubMed ID: 35066441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences.
    Schneider C; Lavoie BA; Capaday C
    J Neurophysiol; 2000 May; 83(5):2881-90. PubMed ID: 10805685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait variability and motor control in people with knee osteoarthritis.
    Alkjaer T; Raffalt PC; Dalsgaard H; Simonsen EB; Petersen NC; Bliddal H; Henriksen M
    Gait Posture; 2015 Oct; 42(4):479-84. PubMed ID: 26282046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Benefit of Combining Neuronal Feedback and Feed-Forward Control for Robustness in Step Down Perturbations of Simulated Human Walking Depends on the Muscle Function.
    Haeufle DFB; Schmortte B; Geyer H; Müller R; Schmitt S
    Front Comput Neurosci; 2018; 12():80. PubMed ID: 30356859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.