These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37580408)

  • 1. Programmable nanophotonic planar resonator filter-absorber based on phase-change InSbTe.
    Oliveira IA; de Souza ILG; Rodriguez-Esquerre VF
    Sci Rep; 2023 Aug; 13(1):13225. PubMed ID: 37580408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of hybrid narrow-band plasmonic absorber based on chalcogenide phase change material in the infrared spectrum.
    Alves Oliveira I; Gomes de Souza IL; Rodriguez-Esquerre VF
    Sci Rep; 2021 Nov; 11(1):21919. PubMed ID: 34754022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In
    Heßler A; Wahl S; Leuteritz T; Antonopoulos A; Stergianou C; Schön CF; Naumann L; Eicker N; Lewin M; Maß TWW; Wuttig M; Linden S; Taubner T
    Nat Commun; 2021 Feb; 12(1):924. PubMed ID: 33568636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-IR reconfigurable 1D Ag grating Fabry-Perot absorber hybridized with phase-change material GSST.
    Zamani N; Hatef A; Nadgaran H
    Appl Opt; 2021 Sep; 60(25):7596-7602. PubMed ID: 34613226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Resonance Tuning of Nanoslit Antennas with Phase-Change Materials.
    Conrads L; Heßler A; Völkel L; Wilden K; Strauch A; Pries J; Wuttig M; Taubner T
    ACS Nano; 2023 Dec; 17(24):25721-25730. PubMed ID: 38085927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Accurate Thermal Modeling of Phase Change Material-Based Photonic Devices.
    Aryana K; Kim HJ; Popescu CC; Vitale S; Bae HB; Lee T; Gu T; Hu J
    Small; 2023 Dec; 19(50):e2304145. PubMed ID: 37649187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications.
    Carrillo SG; Nash GR; Hayat H; Cryan MJ; Klemm M; Bhaskaran H; Wright CD
    Opt Express; 2016 Jun; 24(12):13563-73. PubMed ID: 27410372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reconfigurable hyperbolic metamaterial perfect absorber.
    Behera JK; Liu K; Lian M; Cao T
    Nanoscale Adv; 2021 Mar; 3(6):1758-1766. PubMed ID: 36132556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chalcogenide-gold dual-layers coupled to gold nanoparticles for reconfigurable perfect absorption.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    Nanoscale; 2019 Nov; 11(43):20546-20553. PubMed ID: 31432855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In
    Meng C; Zeng Y; Lu D; Zou H; Wang J; He Q; Yang X; Xu M; Miao X; Zhang X; Li P
    Nanoscale; 2023 Mar; 15(13):6306-6312. PubMed ID: 36912480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable Wavefront Control in the Visible Spectrum Using Low-Loss Chalcogenide Phase-Change Metasurfaces.
    Moitra P; Wang Y; Liang X; Lu L; Poh A; Mass TWW; Simpson RE; Kuznetsov AI; Paniagua-Dominguez R
    Adv Mater; 2023 Aug; 35(34):e2205367. PubMed ID: 36341483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically Reconfigurable Phase-Change Transmissive Metasurface.
    Popescu CC; Aryana K; Garud P; Dao KP; Vitale S; Liberman V; Bae HB; Lee TW; Kang M; Richardson KA; Julian M; Ocampo CAR; Zhang Y; Gu T; Hu J; Kim HJ
    Adv Mater; 2024 May; ():e2400627. PubMed ID: 38724020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalent circuit model of graphene chiral multi-band metadevice absorber composed of U-shaped resonator array.
    Asgari S; Fabritius T
    Opt Express; 2020 Dec; 28(26):39850-39867. PubMed ID: 33379526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters.
    Zheng J; Zhu S; Xu P; Dunham S; Majumdar A
    ACS Appl Mater Interfaces; 2020 May; 12(19):21827-21836. PubMed ID: 32297737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical nanoimaging of laser-switched phase-change plasmonic infrared antennas.
    Chen Q; Lu D; Qin T; Luo X; Xu M; Li P
    Opt Lett; 2024 Feb; 49(4):1021-1024. PubMed ID: 38359232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices.
    Raeis-Hosseini N; Rho J
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28878196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum.
    Gomes de Souza IL; Rodriguez-Esquerre VF
    Sci Rep; 2019 May; 9(1):7045. PubMed ID: 31065016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics.
    Taghinejad H; Abdollahramezani S; Eftekhar AA; Fan T; Hosseinnia AH; Hemmatyar O; Eshaghian Dorche A; Gallmon A; Adibi A
    Opt Express; 2021 Jun; 29(13):20449-20462. PubMed ID: 34266134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-Range Multiple-Channel Metal-Shell Rod-Shaped Narrowband Plasmonic Metamaterial Absorber for Refractive Index and Temperature Sensing.
    Chao CC; Kooh MRR; Lim CM; Thotagamuge R; Mahadi AH; Chau YC
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.