These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3758063)

  • 1. Use of a trypsin-pulse method to study the refolding pathway of ribonuclease.
    Lang K; Schmid FX
    Eur J Biochem; 1986 Sep; 159(2):275-81. PubMed ID: 3758063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A carboxypeptidase Y pulse method to study the accessibility of the C-terminal end during the refolding of ribonuclease A.
    Teschner W; Rudolph R
    Biochem J; 1989 Jun; 260(2):583-7. PubMed ID: 2764891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An early intermediate in the folding of ribonuclease A is protected against cleavage by pepsin.
    Schmid F; Blaschek H
    Biochemistry; 1984 May; 23(10):2128-33. PubMed ID: 6428447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediates in the refolding of ribonuclease at subzero temperatures. 3. Multiple folding pathways.
    Biringer RG; Fink AL
    Biochemistry; 1988 Jan; 27(1):315-25. PubMed ID: 3349035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease.
    Schmid FX; Grafl R; Wrba A; Beintema JJ
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):872-6. PubMed ID: 3456571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of two proline-containing turns in the folding of porcine ribonuclease.
    Lang K; Schmid FX
    J Mol Biol; 1990 Mar; 212(1):185-96. PubMed ID: 2319596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediates in the refolding of ribonuclease at subzero temperatures. 2. Monitoring by inhibitor binding and catalytic activity.
    Biringer RG; Austin CM; Fink AL
    Biochemistry; 1988 Jan; 27(1):311-5. PubMed ID: 2831957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of prolines-114 and -117 in the slow refolding phase of ribonuclease A as determined by isomer-specific proteolysis.
    Lin LN; Brandts JF
    Biochemistry; 1984 Nov; 23(24):5713-23. PubMed ID: 6441592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3061-70. PubMed ID: 2110824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomerization of proline-93 during the unfolding and refolding of ribonuclease A.
    Lin LN; Brandts JF
    Biochemistry; 1983 Feb; 22(3):559-63. PubMed ID: 6838812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of folding of ribonuclease A. Slow refolding is a sequential reaction via structural intermediates.
    Schmid FX
    Biochemistry; 1983 Sep; 22(20):4690-6. PubMed ID: 6626523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediates in the refolding of ribonuclease at subzero temperatures. 1. Monitoring by nitrotyrosine absorbance.
    Biringer RG; Fink AL
    Biochemistry; 1988 Jan; 27(1):301-11. PubMed ID: 3349034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refolding of ribonuclease in the presence and absence of ammonium sulfate pulses. Comparison between experiments and simulations.
    Lin LN; Brandts JF
    Biochemistry; 1987 Apr; 26(7):1826-30. PubMed ID: 3593695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of methanol and temperature on the kinetics of refolding of ribonuclease A.
    Fink AL; Anderson WD; Hattersley JE; Lustig BS
    FEBS Lett; 1988 Aug; 236(1):190-4. PubMed ID: 3402613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of the refolding of denatured ribonuclease A.
    Mui PW; Konishi Y; Scheraga HA
    Biochemistry; 1985 Jul; 24(16):4481-9. PubMed ID: 4052411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural intermediates trapped during the folding of ribonuclease A by amide proton exchange.
    Kim PS; Baldwin RL
    Biochemistry; 1980 Dec; 19(26):6124-9. PubMed ID: 6258629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of monodeamidated derivatives of bovine pancreatic ribonuclease A.
    Venkatesh YP; Vithayathil PJ
    Int J Pept Protein Res; 1984 May; 23(5):494-505. PubMed ID: 6429073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ions restore the proteolytic resistance of denatured conglutin gamma, a lupin seed glycoprotein, by promoting its refolding.
    Duranti M; Di Cataldo A; Sessa F; Scarafoni A; Ceciliani F
    J Agric Food Chem; 2002 Mar; 50(7):2029-33. PubMed ID: 11902952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.