BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3758070)

  • 1. Calcium release from calmodulin and its C-terminal or N-terminal halves in the presence of the calmodulin antagonists phenoxybenzamine and melittin measured by stopped-flow fluorescence with Quin 2 and intrinsic tyrosine. Inhibition of calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum.
    Suko J; Wyskovsky W; Pidlich J; Hauptner R; Plank B; Hellmann G
    Eur J Biochem; 1986 Sep; 159(3):425-34. PubMed ID: 3758070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium release from intact calmodulin and calmodulin fragment 78-148 measured by stopped-flow fluorescence with 2-p-toluidinylnaphthalene sulfonate. Effect of calmodulin fragments on cardiac sarcoplasmic reticulum.
    Suko J; Pidlich J; Bertel O
    Eur J Biochem; 1985 Dec; 153(3):451-7. PubMed ID: 4076187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure.
    Martin SR; Andersson Teleman A; Bayley PM; Drakenberg T; Forsen S
    Eur J Biochem; 1985 Sep; 151(3):543-50. PubMed ID: 4029146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies.
    Bayley P; Ahlström P; Martin SR; Forsen S
    Biochem Biophys Res Commun; 1984 Apr; 120(1):185-91. PubMed ID: 6712688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and kinetic studies of calmodulin and melittin complex.
    Itakura M; Iio T
    J Biochem; 1992 Aug; 112(2):183-91. PubMed ID: 1400261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation- and peptide-binding properties of human calmodulin-like skin protein.
    Durussel I; Méhul B; Bernard D; Schmidt R; Cox JA
    Biochemistry; 2002 Apr; 41(17):5439-48. PubMed ID: 11969404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C.
    Baudier J; Mochly-Rosen D; Newton A; Lee SH; Koshland DE; Cole RD
    Biochemistry; 1987 May; 26(10):2886-93. PubMed ID: 3111527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of melittin with calmodulin and its tryptic fragments.
    Steiner RF; Marshall L; Needleman D
    Arch Biochem Biophys; 1986 Apr; 246(1):286-300. PubMed ID: 3963824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melittin binding causes a large calcium-dependent conformational change in calmodulin.
    Kataoka M; Head JF; Seaton BA; Engelman DM
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6944-8. PubMed ID: 2780551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium.
    Maulet Y; Cox JA
    Biochemistry; 1983 Nov; 22(24):5680-6. PubMed ID: 6652077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of cadmium and terbium dissociation from calmodulin and its tryptic fragments.
    Martin SR; Linse S; Bayley PM; Forsén S
    Eur J Biochem; 1986 Dec; 161(3):595-601. PubMed ID: 3792310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium dissociation from mastoparan complexes of calmodulin and its tryptic fragments measured with Quin 2.
    Suko J; Wyskovsky W; Pidlich J; Plank B; Hauptner R; Hellmann G
    Prog Clin Biol Res; 1988; 252():161-4. PubMed ID: 3347616
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase.
    Orlowski S; Champeil P
    Biochemistry; 1991 Jan; 30(2):352-61. PubMed ID: 1824819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of engineered proteins with internal tryptophan reporter groups and pertubation techniques to probe the mechanism of ligand-protein interactions: investigation of the mechanism of calcium binding to calmodulin.
    Kilhoffer MC; Kubina M; Travers F; Haiech J
    Biochemistry; 1992 Sep; 31(34):8098-106. PubMed ID: 1510991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition by melittin of phospholipid-sensitive and calmodulin-sensitive Ca2+-dependent protein kinases.
    Katoh N; Raynor RL; Wise BC; Schatzman RC; Turner RS; Helfman DM; Fain JN; Kuo JF
    Biochem J; 1982 Jan; 202(1):217-24. PubMed ID: 6896276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of calmodulin with melittin.
    Caday CG; Steiner RF
    Biochem Biophys Res Commun; 1986 Mar; 135(2):419-25. PubMed ID: 3964256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by melittin and fluphenazine of melanotropin receptor function and adenylate cyclase in M2R melanoma cell membranes.
    Gerst JE; Salomon Y
    Endocrinology; 1987 Nov; 121(5):1766-72. PubMed ID: 3665846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin.
    Martin SR; Maune JF; Beckingham K; Bayley PM
    Eur J Biochem; 1992 May; 205(3):1107-14. PubMed ID: 1576994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melittin-binding of troponin C.
    Iio T
    J Biochem; 1993 Dec; 114(6):773-8. PubMed ID: 8138531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of Ca2+ from sarcoplasmic reticulum Ca2+-ATPase and changes in fluorescence of optically selected Trp residues. Effects of KCl and NaCl and implications for substeps in Ca2+ dissociation.
    Champeil P; Henao F; de Foresta B
    Biochemistry; 1997 Oct; 36(40):12383-93. PubMed ID: 9315879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.