These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 37580905)
1. Gene augmentation therapy attenuates retinal degeneration in a knockout mouse model of Fam161a retinitis pigmentosa. Matsevich C; Gopalakrishnan P; Chang N; Obolensky A; Beryozkin A; Salameh M; Kostic C; Sharon D; Arsenijevic Y; Banin E Mol Ther; 2023 Oct; 31(10):2948-2961. PubMed ID: 37580905 [TBL] [Abstract][Full Text] [Related]
2. A new mouse model for retinal degeneration due to Fam161a deficiency. Beryozkin A; Matsevich C; Obolensky A; Kostic C; Arsenijevic Y; Wolfrum U; Banin E; Sharon D Sci Rep; 2021 Jan; 11(1):2030. PubMed ID: 33479377 [TBL] [Abstract][Full Text] [Related]
3. Morphological and Functional Comparison of Mice Models for Retinitis Pigmentosa. Gopalakrishnan P; Beryozkin A; Banin E; Sharon D Adv Exp Med Biol; 2023; 1415():365-370. PubMed ID: 37440058 [TBL] [Abstract][Full Text] [Related]
4. Retinal Structure and Function in a Knock-in Mouse Model for the Matsevich C; Gopalakrishnan P; Obolensky A; Banin E; Sharon D; Beryozkin A Ophthalmol Sci; 2023 Mar; 3(1):100229. PubMed ID: 36420180 [TBL] [Abstract][Full Text] [Related]
5. Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2)-knockout mice by gene replacement therapy. Mookherjee S; Hiriyanna S; Kaneshiro K; Li L; Li Y; Li W; Qian H; Li T; Khanna H; Colosi P; Swaroop A; Wu Z Hum Mol Genet; 2015 Nov; 24(22):6446-58. PubMed ID: 26358772 [TBL] [Abstract][Full Text] [Related]
7. Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration. Karlstetter M; Sorusch N; Caramoy A; Dannhausen K; Aslanidis A; Fauser S; Boesl MR; Nagel-Wolfrum K; Tamm ER; Jägle H; Stoehr H; Wolfrum U; Langmann T Hum Mol Genet; 2014 Oct; 23(19):5197-210. PubMed ID: 24833722 [TBL] [Abstract][Full Text] [Related]
8. FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Di Gioia SA; Letteboer SJ; Kostic C; Bandah-Rozenfeld D; Hetterschijt L; Sharon D; Arsenijevic Y; Roepman R; Rivolta C Hum Mol Genet; 2012 Dec; 21(23):5174-84. PubMed ID: 22940612 [TBL] [Abstract][Full Text] [Related]
9. Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Langmann T; Di Gioia SA; Rau I; Stöhr H; Maksimovic NS; Corbo JC; Renner AB; Zrenner E; Kumaramanickavel G; Karlstetter M; Arsenijevic Y; Weber BH; Gal A; Rivolta C Am J Hum Genet; 2010 Sep; 87(3):376-81. PubMed ID: 20705278 [TBL] [Abstract][Full Text] [Related]
10. The retinitis pigmentosa 28 protein FAM161A is a novel ciliary protein involved in intermolecular protein interaction and microtubule association. Zach F; Grassmann F; Langmann T; Sorusch N; Wolfrum U; Stöhr H Hum Mol Genet; 2012 Nov; 21(21):4573-86. PubMed ID: 22791751 [TBL] [Abstract][Full Text] [Related]
11. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Michalakis S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Schulze E; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Mühlfriedel R; Biel M Adv Exp Med Biol; 2014; 801():733-9. PubMed ID: 24664765 [TBL] [Abstract][Full Text] [Related]
12. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
14. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; Patrício MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related]
15. Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Xi Z; Vats A; Sahel JA; Chen Y; Byrne LC Nat Commun; 2022 Dec; 13(1):7695. PubMed ID: 36509783 [TBL] [Abstract][Full Text] [Related]
16. Long-term Rescue of Photoreceptors in a Rodent Model of Retinitis Pigmentosa Associated with MERTK Mutation. Lorach H; Kang S; Dalal R; Bhuckory MB; Quan Y; Palanker D Sci Rep; 2018 Jul; 8(1):11312. PubMed ID: 30054542 [TBL] [Abstract][Full Text] [Related]
17. Bardet-Biedl Syndrome in rhesus macaques: A nonhuman primate model of retinitis pigmentosa. Peterson SM; McGill TJ; Puthussery T; Stoddard J; Renner L; Lewis AD; Colgin LMA; Gayet J; Wang X; Prongay K; Cullin C; Dozier BL; Ferguson B; Neuringer M Exp Eye Res; 2019 Dec; 189():107825. PubMed ID: 31589838 [TBL] [Abstract][Full Text] [Related]
18. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Kevany BM; Zhang N; Jastrzebska B; Palczewski K Hum Mol Genet; 2015 May; 24(9):2627-40. PubMed ID: 25616964 [TBL] [Abstract][Full Text] [Related]
19. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Bandah-Rozenfeld D; Mizrahi-Meissonnier L; Farhy C; Obolensky A; Chowers I; Pe'er J; Merin S; Ben-Yosef T; Ashery-Padan R; Banin E; Sharon D Am J Hum Genet; 2010 Sep; 87(3):382-91. PubMed ID: 20705279 [TBL] [Abstract][Full Text] [Related]
20. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Biel M; Mühlfriedel R; Michalakis S Hum Mol Genet; 2012 Oct; 21(20):4486-96. PubMed ID: 22802073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]