These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37581059)

  • 1. Dynamic controllable residual generative adversarial network for low-dose computed tomography imaging.
    Xia Z; Liu J; Kang Y; Wang Y; Hu D; Zhang Y
    Quant Imaging Med Surg; 2023 Aug; 13(8):5271-5293. PubMed ID: 37581059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly supervised low-dose computed tomography denoising based on generative adversarial networks.
    Liao P; Zhang X; Wu Y; Chen H; Du W; Liu H; Yang H; Zhang Y
    Quant Imaging Med Surg; 2024 Aug; 14(8):5571-5590. PubMed ID: 39144020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network.
    Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X
    Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients.
    Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG
    Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422
    [No Abstract]   [Full Text] [Related]  

  • 5. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic high-energy computed tomography image via a Wasserstein generative adversarial network with the convolutional block attention module.
    Kong H; Yuan Z; Zhou H; Liang G; Yan Z; Cheng G; Hu Z
    Quant Imaging Med Surg; 2023 Jul; 13(7):4365-4379. PubMed ID: 37456308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks.
    Liu X; Su S; Gu W; Yao T; Shen J; Mo Y
    Ann Biomed Eng; 2024 Jan; 52(1):57-70. PubMed ID: 38064116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis of high-energy CT images from low-energy CT images using an improved cycle generative adversarial network.
    Zhou H; Liu X; Wang H; Chen Q; Wang R; Pang ZF; Zhang Y; Hu Z
    Quant Imaging Med Surg; 2022 Jan; 12(1):28-42. PubMed ID: 34993058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
    Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B
    Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-stage deep-learning framework for CT denoising based on a clinically structure-unaligned paired data set.
    Hu R; Xie Y; Zhang L; Liu L; Luo H; Wu R; Luo D; Liu Z; Hu Z
    Quant Imaging Med Surg; 2024 Jan; 14(1):335-351. PubMed ID: 38223072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-preserving low-dose computed tomography image denoising using a deep residual adaptive global context attention network.
    Zhang Y; Hao D; Lin Y; Sun W; Zhang J; Meng J; Ma F; Guo Y; Lu H; Li G; Liu J
    Quant Imaging Med Surg; 2023 Oct; 13(10):6528-6545. PubMed ID: 37869272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss.
    Ouyang J; Chen KT; Gong E; Pauly J; Zaharchuk G
    Med Phys; 2019 Aug; 46(8):3555-3564. PubMed ID: 31131901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction.
    Xiao Y; Chen C; Wang L; Yu J; Fu X; Zou Y; Lin Z; Wang K
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37285848
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthetic 3D Spinal Vertebrae Reconstruction from Biplanar X-rays Utilizing Generative Adversarial Networks.
    Saravi B; Guzel HE; Zink A; Ülkümen S; Couillard-Despres S; Wollborn J; Lang G; Hassel F
    J Pers Med; 2023 Nov; 13(12):. PubMed ID: 38138869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRCON-Net: Multiscale reweighted convolutional coding neural network for low-dose CT imaging.
    Liu J; Kang Y; Xia Z; Qiang J; Zhang J; Zhang Y; Chen Y
    Comput Methods Programs Biomed; 2022 Jun; 221():106851. PubMed ID: 35576686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.