These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37581255)
1. Colorimetric Gas Detection Tubes: Limits of Detection and Evaluation Using Active Chemical Warfare Agents. Hauck BC; Ince BS; Riley PC ACS Sens; 2023 Aug; 8(8):2945-2951. PubMed ID: 37581255 [TBL] [Abstract][Full Text] [Related]
2. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study. Kelly JT; Qualley A; Hughes GT; Rubenstein MH; Malloy TA; Piatkowski T J Chromatogr A; 2021 Jan; 1636():461784. PubMed ID: 33360649 [TBL] [Abstract][Full Text] [Related]
3. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
4. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator. Nagashima H; Kondo T; Nagoya T; Ikeda T; Kurimata N; Unoke S; Seto Y J Chromatogr A; 2015 Aug; 1406():279-90. PubMed ID: 26118803 [TBL] [Abstract][Full Text] [Related]
5. Verification of exposure to chemical warfare agents through analysis of persistent biomarkers in plants. de Bruin-Hoegée M; Lamriti L; Langenberg JP; Olivier RCM; Chau LF; van der Schans MJ; Noort D; van Asten AC Anal Methods; 2023 Jan; 15(2):142-153. PubMed ID: 36524843 [TBL] [Abstract][Full Text] [Related]
6. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents. Graichen AM; Vachet RW J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782 [TBL] [Abstract][Full Text] [Related]
7. μ-PADs for detection of chemical warfare agents. Pardasani D; Tak V; Purohit AK; Dubey DK Analyst; 2012 Dec; 137(23):5648-53. PubMed ID: 23086107 [TBL] [Abstract][Full Text] [Related]
8. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization. Ahrens A; Allers M; Bock H; Hitzemann M; Ficks A; Zimmermann S Anal Chem; 2022 Nov; 94(44):15440-15447. PubMed ID: 36301910 [TBL] [Abstract][Full Text] [Related]
10. Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Sanders CA; Rodriguez M; Greenbaum E Biosens Bioelectron; 2001 Sep; 16(7-8):439-46. PubMed ID: 11544038 [TBL] [Abstract][Full Text] [Related]
11. Highly specific and sensitive chromo-fluorogenic detection of sarin, tabun, and mustard gas stimulants: a multianalyte recognition approach. Tohora N; Ahamed S; Mahato M; Sultana T; Chourasia J; Maiti A; Das SK Photochem Photobiol Sci; 2024 Apr; 23(4):763-780. PubMed ID: 38519812 [TBL] [Abstract][Full Text] [Related]
12. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. Black RM; Clarke RJ; Read RW; Reid MT J Chromatogr A; 1994 Feb; 662(2):301-21. PubMed ID: 8143028 [TBL] [Abstract][Full Text] [Related]
13. Physics-based agent to simulant correlations for vapor phase mass transport. Willis MP; Varady MJ; Pearl TP; Fouse JC; Riley PC; Mantooth BA; Lalain TA J Hazard Mater; 2013 Dec; 263 Pt 2():479-85. PubMed ID: 24225584 [TBL] [Abstract][Full Text] [Related]
14. Selective Colorimetric Detection of Novichok Agents with Hydrazone Chemosensors. Termeau L; Penlou S; Carella A ACS Sens; 2023 Apr; 8(4):1510-1517. PubMed ID: 37036422 [TBL] [Abstract][Full Text] [Related]
15. Blaptica dubia as sentinels for exposure to chemical warfare agents - a pilot study. Worek F; Seeger T; Neumaier K; Wille T; Thiermann H Toxicol Lett; 2016 Nov; 262():12-16. PubMed ID: 27639501 [TBL] [Abstract][Full Text] [Related]
16. Sampling and analyses of surfaces contaminated with chemical warfare agents by using a newly developed triple layered composite wipe. Imran M; Kumar N; Thakare VB; Gupta AK; Acharya J; Garg P Anal Bioanal Chem; 2020 Feb; 412(5):1097-1110. PubMed ID: 31907592 [TBL] [Abstract][Full Text] [Related]
17. Rapid analysis of sulfur mustard oxide in plasma using gas chromatography-chemical ionization-mass spectrometry for diagnosis of sulfur mustard exposure. Manandhar E; Pay A; Veress LA; Logue BA J Chromatogr A; 2018 Oct; 1572():106-111. PubMed ID: 30170867 [TBL] [Abstract][Full Text] [Related]
18. 'Dilute-and-shoot' RSLC-MS-MS method for fast detection of nerve and vesicant chemical warfare agent metabolites in urine. Rodin I; Braun A; Stavrianidi A; Baygildiev T; Shpigun O; Oreshkin D; Rybalchenko I J Anal Toxicol; 2015; 39(1):69-74. PubMed ID: 25326204 [TBL] [Abstract][Full Text] [Related]
19. Chromogenic detection of Sarin by discolouring decomplexation of a metal coordination complex. Ordronneau L; Carella A; Pohanka M; Simonato JP Chem Commun (Camb); 2013 Oct; 49(79):8946-8. PubMed ID: 23963476 [TBL] [Abstract][Full Text] [Related]
20. Homogeneously niobium-doped MoS Jiang H; Wang H; Shangguan Y; Chen J; Liang T Front Chem; 2022; 10():1011471. PubMed ID: 36171997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]