These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37581353)

  • 1. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons.
    Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT
    Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons.
    Xiao J; Long M; Zhang X; Zhang D; Xu H; Chan KS
    J Phys Chem Lett; 2015 Oct; 6(20):4141-7. PubMed ID: 26722789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local atomic-morphology-resolved edge states in twisted bilayer graphene nanoribbons.
    Shao H; Zhou G
    J Phys Condens Matter; 2022 Nov; 35(3):. PubMed ID: 36347045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons.
    Rezania H; Abdi M; Nourian E; Astinchap B
    RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons.
    Jia C; Cao L; Zhou X; Zhou B; Zhou G
    J Phys Condens Matter; 2018 Jul; 30(26):265301. PubMed ID: 29762129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures.
    Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X
    Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between energy band transition and optical absorption spectrum in bilayer armchair graphene nanoribbons.
    Nguyen LT; Ngo VC; Thai TL; Phan DT; Nguyen TA; Tran VT; Vu TT; Phan TK
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-controlled electronic structures and quantum transport in monolayer InSe nanoribbons.
    Ye Q; Tang S; Du Y; Liu Z; Wu Q; Xiao X
    J Phys Condens Matter; 2024 Jun; 36(36):. PubMed ID: 38830373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Edge Reconstruction in the Synthesis of Few-Layer Black Phosphorene.
    Ding LP; Guo ZA; Qiao FY; Guo YJ; Shao P; Ding F
    J Phys Chem Lett; 2024 Feb; 15(7):1999-2005. PubMed ID: 38349331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum confinement and edge effects on electronic properties of zigzag green phosphorene nanoribbons.
    Ma C; Ma T; Peng X
    J Phys Condens Matter; 2020 Apr; 32(17):175301. PubMed ID: 31914431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schottky diodes based on blue phosphorene nanoribbon homojunctions.
    Liu YH; Lu XQ; Dong MM; Zhang GP; Li ZL; Wang CK; Fu XX
    Phys Chem Chem Phys; 2022 Dec; 24(47):29057-29063. PubMed ID: 36437710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-edged bilayer phosphorene nanoribbons producing from collapsing armchair phosphorene nanotubes.
    Liao X; Xiao H; Lu X; Chen Y; Shi X; Chen X
    Nanotechnology; 2018 Feb; 29(8):085707. PubMed ID: 29300176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.