These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 37581368)
81. Electrospun alginate mats embedding silver nanoparticles with bioactive properties. Alloisio M; Dodero A; Alberti S; Vicini S; Castellano M Int J Biol Macromol; 2022 Jul; 213():427-434. PubMed ID: 35661668 [TBL] [Abstract][Full Text] [Related]
82. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Im AR; Kim JY; Kim HS; Cho S; Park Y; Kim YS Nanotechnology; 2013 Oct; 24(39):395102. PubMed ID: 24008263 [TBL] [Abstract][Full Text] [Related]
83. Ameliorated Antibacterial and Antioxidant Properties by Konappa N; Udayashankar AC; Dhamodaran N; Krishnamurthy S; Jagannath S; Uzma F; Pradeep CK; De Britto S; Chowdappa S; Jogaiah S Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33916555 [TBL] [Abstract][Full Text] [Related]
84. Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Hu X; Saravanakumar K; Jin T; Wang MH Int J Nanomedicine; 2019; 14():3427-3438. PubMed ID: 31190801 [No Abstract] [Full Text] [Related]
85. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Gavade NL; Kadam AN; Suwarnkar MB; Ghodake VP; Garadkar KM Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():953-60. PubMed ID: 25459621 [TBL] [Abstract][Full Text] [Related]
86. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Singh H; Du J; Yi TH Artif Cells Nanomed Biotechnol; 2017 Nov; 45(7):1310-1316. PubMed ID: 27598388 [TBL] [Abstract][Full Text] [Related]
87. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Hamouda T; Ibrahim HM; Kafafy HH; Mashaly HM; Mohamed NH; Aly NM Int J Biol Macromol; 2021 Jun; 181():990-1002. PubMed ID: 33864870 [TBL] [Abstract][Full Text] [Related]
88. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Swamy MK; Akhtar MS; Mohanty SK; Sinniah UR Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():939-44. PubMed ID: 26186612 [TBL] [Abstract][Full Text] [Related]
89. Green Synthesis of Silver Nanoparticles Using Aerial Part Extract of the Ajlouni AW; Hamdan EH; Alshalawi RAE; Shaik MR; Khan M; Kuniyil M; Alwarthan A; Ansari MA; Khan M; Alkhathlan HZ; Shaik JP; Adil SF Molecules; 2022 Dec; 28(1):. PubMed ID: 36615440 [TBL] [Abstract][Full Text] [Related]
91. Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment. Pucelik B; Sułek A; Borkowski M; Barzowska A; Kobielusz M; Dąbrowski JM ACS Appl Mater Interfaces; 2022 Apr; 14(13):14981-14996. PubMed ID: 35344328 [TBL] [Abstract][Full Text] [Related]
92. Influence of Anions on the Antibacterial Activity and Physicochemical Properties of Different-Sized Silver Nanoparticles. Yuan B; Shangguan S; Zhao D Molecules; 2024 Aug; 29(17):. PubMed ID: 39274947 [TBL] [Abstract][Full Text] [Related]
93. Antimicrobial effects of silver nanoparticle-microspots on the mechanical properties of single bacteria. Caniglia G; Valavanis D; Tezcan G; Magiera J; Barth H; Bansmann J; Kranz C; Unwin PR Analyst; 2024 Apr; 149(9):2637-2646. PubMed ID: 38529543 [TBL] [Abstract][Full Text] [Related]
94. Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Wu K; Li H; Cui X; Feng R; Chen W; Jiang Y; Tang C; Wang Y; Wang Y; Shen X; Liu Y; Lynch M; Long H Antimicrob Agents Chemother; 2022 Oct; 66(10):e0062822. PubMed ID: 36094196 [TBL] [Abstract][Full Text] [Related]
95. Extracellular directed ag NPs formation and investigation of their antimicrobial and cytotoxic properties. Altinsoy BD; Şeker Karatoprak G; Ocsoy I Saudi Pharm J; 2019 Jan; 27(1):9-16. PubMed ID: 30627047 [TBL] [Abstract][Full Text] [Related]
96. Unraveling the mysteries of silver nanoparticles: synthesis, characterization, antimicrobial effects and uptake translocation in plant-a review. Fares A; Mahdy A; Ahmed G Planta; 2024 May; 260(1):7. PubMed ID: 38789841 [TBL] [Abstract][Full Text] [Related]
97. All That Glitters Is Not Silver-A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Kowalczyk P; Szymczak M; Maciejewska M; Laskowski Ł; Laskowska M; Ostaszewski R; Skiba G; Franiak-Pietryga I Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467032 [TBL] [Abstract][Full Text] [Related]
98. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Zharkova MS; Golubeva OY; Orlov DS; Vladimirova EV; Dmitriev AV; Tossi A; Shamova OV Front Microbiol; 2021; 12():750556. PubMed ID: 34975782 [TBL] [Abstract][Full Text] [Related]
99. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. Vazquez-Muñoz R; Bogdanchikova N; Huerta-Saquero A ACS Omega; 2020 Nov; 5(44):28441-28451. PubMed ID: 33195894 [TBL] [Abstract][Full Text] [Related]
100. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Kong IC; Ko KS; Koh DC Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187117 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]