These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37581564)

  • 1. Bi
    Chee TS; Lee S; Ng WJ; Akmal M; Ryu HJ
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40438-40450. PubMed ID: 37581564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly radioiodine gas capture by 2-mercaptobenzimidazole-functionalized Bi/Mg oxide and effective iodine waste immobilization by etidronic-Bi
    Muhire C; Zhang D; Chang C; Zhang X; Li D; Zhiren G; Zhang Z; Zhang F; Hou J; Li J; Xu X
    J Hazard Mater; 2024 Aug; 474():134688. PubMed ID: 38805823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Retention Immobilization of Iodine in B-Bi-Zn Oxide Glass Using Bi
    Xian Q; Xiao X; Yu J; Gan Y; Chen L; He X; Wang E; Dan H; Zhu L; Ding Y; Duan T
    Inorg Chem; 2022 Dec; 61(48):19633-19641. PubMed ID: 36383924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of radioactive corrosion products by cold sintering of pure hydroxyapatite.
    Ul Hassan M; Iqbal S; Yun JI; Ryu HJ
    J Hazard Mater; 2019 Jul; 374():228-237. PubMed ID: 31005705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient immobilization of ionic corrosion products by a silica-hydroxyapatite composite
    Iqbal S; Hassan MU; Ryu HJ; Yun JI
    RSC Adv; 2019 Oct; 9(60):34872-34879. PubMed ID: 35542051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-volatile immobilization of iodine by the cold-sintering of iodosodalite.
    Hassan MU; Venkatesan S; Ryu HJ
    J Hazard Mater; 2020 Mar; 386():121646. PubMed ID: 31757726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive comparison of bismuth and silver functionalized nickel foam composites in capturing radioactive gaseous iodine.
    Tian Z; Chee TS; Zhu L; Duan T; Zhang X; Lei L; Xiao C
    J Hazard Mater; 2021 Sep; 417():125978. PubMed ID: 34015715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of NO
    Baskaran K; Elliott C; Ali M; Moon J; Beland J; Cohrs D; Chong S; Riley BJ; Chidambaram D; Carlson K
    J Hazard Mater; 2023 Mar; 446():130644. PubMed ID: 36587601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas.
    Jung YE; Yang JH; Yim MS
    J Hazard Mater; 2024 Apr; 467():133777. PubMed ID: 38359759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the removal of radioactive iodine by bismuth-based materials.
    Hao Y; Tian Z; Liu C; Xiao C
    Front Chem; 2023; 11():1122484. PubMed ID: 36762197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur vacancy-rich bismuth sulfide nanowire derived from CAU-17 for radioactive iodine capture in complex environments: Performance and intrinsic mechanisms.
    Chen KW; Zhou XY; Dai XJ; Chen YT; Li SX; Gong CH; Wang P; Mao P; Jiao Y; Chen K; Yang Y
    J Hazard Mater; 2024 Jul; 473():134584. PubMed ID: 38761762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of bismuth-functionalized graphene oxide to remove radioactive iodine.
    Han S; Um W; Kim WS
    Dalton Trans; 2019 Jan; 48(2):478-485. PubMed ID: 30520479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of novel Bi
    Xian Q; Chen L; Fan W; Liu Y; He X; Dan H; Zhu L; Ding Y; Duan T
    J Hazard Mater; 2022 Feb; 424(Pt C):127678. PubMed ID: 34775310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel synthesis of Bi-Bi
    Zou H; Yi F; Song M; Wang X; Bian L; Li W; Pan N; Jiang X
    J Hazard Mater; 2019 Mar; 365():81-87. PubMed ID: 30412810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional-Network-Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine.
    Cao J; Duan S; Zhao Q; Chen G; Wang Z; Liu R; Zhu L; Duan T
    Langmuir; 2023 Sep; 39(36):12910-12919. PubMed ID: 37649325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method.
    Liu X; Pan L; Lv T; Sun Z; Sun CQ
    J Colloid Interface Sci; 2013 Oct; 408():145-50. PubMed ID: 23953652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform Bi-Bi
    Shi M; Zhao M; Zheng Q; Jiao L; Su Z; Li M; Zhao X; Song X; Yang S
    Dalton Trans; 2022 Aug; 51(32):12114-12124. PubMed ID: 35904078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of cesium and iodine into Cs
    Yang K; Zhu W; Scott S; Wang Y; Wang J; Riley BJ; Vienna J; Lian J
    J Hazard Mater; 2021 Jan; 401():123279. PubMed ID: 32629351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of iodine-bearing silver-impregnated alumina sorbents and their direct solidification
    Sakuragi T; Yoshida S; Kato O
    Front Chem; 2023; 11():1089501. PubMed ID: 36756195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide.
    Dinh TD; Zhang D; Tuan VN
    RSC Adv; 2020 Apr; 10(24):14360-14367. PubMed ID: 35498468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.