These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37581570)

  • 1. QMLMaterial─A Quantum Machine Learning Software for Material Design and Discovery.
    Lourenço MP; Herrera LB; Hostaš J; Calaminici P; Köster AM; Tchagang A; Salahub DR
    J Chem Theory Comput; 2023 Sep; 19(17):5999-6010. PubMed ID: 37581570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new active learning approach for adsorbate-substrate structural elucidation in silico.
    Lourenço MP; Herrera LB; Hostaš J; Calaminici P; Köster AM; Tchagang A; Salahub DR
    J Mol Model; 2022 Jun; 28(6):178. PubMed ID: 35654918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic structural elucidation of vacancies in materials by active learning.
    Lourenço MP; Herrera LB; Hostaš J; Calaminici P; Köster AM; Tchagang A; Salahub DR
    Phys Chem Chem Phys; 2022 Oct; 24(41):25227-25239. PubMed ID: 36222106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAMaterial-A genetic-algorithm software for material design and discovery.
    Lourenço MP; Hostaš J; Herrera LB; Calaminici P; Köster AM; Tchagang A; Salahub DR
    J Comput Chem; 2023 Mar; 44(7):814-823. PubMed ID: 36444916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement learning for in silico determination of adsorbate-substrate structures.
    Lourenço MP; Hostaš J; Bellinger C; Tchagang A; Salahub DR
    J Comput Chem; 2024 Jun; 45(15):1289-1302. PubMed ID: 38357973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery.
    Watson OP; Cortes-Ciriano I; Taylor AR; Watson JA
    Bioinformatics; 2019 Nov; 35(22):4656-4663. PubMed ID: 31070704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive design approach for defects distribution modeling in materials from first-principle calculations.
    Lourenço MP; Dos Santos Anastácio A; Rosa AL; Frauenheim T; da Silva MC
    J Mol Model; 2020 Jul; 26(7):187. PubMed ID: 32613379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Energies from a Convolutional Neural Network.
    Chen X; Jørgensen MS; Li J; Hammer B
    J Chem Theory Comput; 2018 Jul; 14(7):3933-3942. PubMed ID: 29812930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Design-to-Device Pipeline for Data-Driven Materials Discovery.
    Cole JM
    Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and DFT-based combined framework for predicting transmission spectra of quantum-confined bio-molecular nanotube.
    Roy DD; Roy P; De D
    J Mol Model; 2023 Oct; 29(11):338. PubMed ID: 37831201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery.
    Pasrija P; Jha P; Upadhyaya P; Khan MS; Chopra M
    Curr Top Med Chem; 2022; 22(20):1692-1727. PubMed ID: 35786336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChecMatE: A workflow package to automatically generate machine learning potentials and phase diagrams for semiconductor alloys.
    Guo YX; Zhuang YB; Shi J; Cheng J
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FCHL revisited: Faster and more accurate quantum machine learning.
    Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O
    J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.
    Oliynyk AO; Mar A
    Acc Chem Res; 2018 Jan; 51(1):59-68. PubMed ID: 29244479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development.
    Sarkar C; Das B; Rawat VS; Wahlang JB; Nongpiur A; Tiewsoh I; Lyngdoh NM; Das D; Bidarolli M; Sony HT
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.