These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 37581618)
1. Targeting BCAA metabolism to potentiate metformin's therapeutic efficacy in the treatment of diabetes in mice. Zhao X; Zhang X; Pei J; Liu Y; Niu W; Sun H Diabetologia; 2023 Nov; 66(11):2139-2153. PubMed ID: 37581618 [TBL] [Abstract][Full Text] [Related]
2. Diabetes and branched-chain amino acids: What is the link? Bloomgarden Z J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529 [TBL] [Abstract][Full Text] [Related]
3. Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Zhou M; Shao J; Wu CY; Shu L; Dong W; Liu Y; Chen M; Wynn RM; Wang J; Wang J; Gui WJ; Qi X; Lusis AJ; Li Z; Wang W; Ning G; Yang X; Chuang DT; Wang Y; Sun H Diabetes; 2019 Sep; 68(9):1730-1746. PubMed ID: 31167878 [TBL] [Abstract][Full Text] [Related]
4. Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Xu Y; Jiang H; Li L; Chen F; Liu Y; Zhou M; Wang J; Jiang J; Li X; Fan X; Zhang L; Zhang J; Qiu J; Wu Y; Fang C; Sun H; Liu J Circulation; 2020 Jul; 142(1):49-64. PubMed ID: 32200651 [TBL] [Abstract][Full Text] [Related]
7. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Lian K; Du C; Liu Y; Zhu D; Yan W; Zhang H; Hong Z; Liu P; Zhang L; Pei H; Zhang J; Gao C; Xin C; Cheng H; Xiong L; Tao L Diabetes; 2015 Jan; 64(1):49-59. PubMed ID: 25071024 [TBL] [Abstract][Full Text] [Related]
8. Branched-chain amino acid metabolism, insulin sensitivity and liver fat response to exercise training in sedentary dysglycaemic and normoglycaemic men. Lee S; Gulseth HL; Langleite TM; Norheim F; Olsen T; Refsum H; Jensen J; Birkeland KI; Drevon CA Diabetologia; 2021 Feb; 64(2):410-423. PubMed ID: 33123769 [TBL] [Abstract][Full Text] [Related]
9. The BCKDH kinase inhibitor BT2 promotes BCAA disposal and mitochondrial proton leak in both insulin-sensitive and insulin-resistant C2C12 myotubes. Rivera CN; Smith CE; Draper LV; Kee ME; Cook NE; McGovern MR; Watne RM; Wommack AJ; Vaughan RA J Cell Biochem; 2024 Mar; 125(3):e30520. PubMed ID: 38226684 [TBL] [Abstract][Full Text] [Related]
10. High doses of rosuvastatin induce impaired branched-chain amino acid catabolism and lead to insulin resistance. Bai X; Long X; Song F; Chen B; Sheng C; Tang C; Li L; Zhang J; Zhang R; Zhang J; Li J Exp Physiol; 2023 Jul; 108(7):961-974. PubMed ID: 37139700 [TBL] [Abstract][Full Text] [Related]
11. BCAA Supplementation in Mice with Diet-induced Obesity Alters the Metabolome Without Impairing Glucose Homeostasis. Lee J; Vijayakumar A; White PJ; Xu Y; Ilkayeva O; Lynch CJ; Newgard CB; Kahn BB Endocrinology; 2021 Jul; 162(7):. PubMed ID: 33765118 [TBL] [Abstract][Full Text] [Related]
12. Effect of metformin on myotube BCAA catabolism. Rivera ME; Lyon ES; Vaughan RA J Cell Biochem; 2020 Jan; 121(1):816-827. PubMed ID: 31385363 [TBL] [Abstract][Full Text] [Related]
13. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids. Yue SJ; Liu J; Wang AT; Meng XT; Yang ZR; Peng C; Guan HS; Wang CY; Yan D Am J Physiol Endocrinol Metab; 2019 Jan; 316(1):E73-E85. PubMed ID: 30422704 [TBL] [Abstract][Full Text] [Related]
14. Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Sjögren RJO; Rizo-Roca D; Chibalin AV; Chorell E; Furrer R; Katayama S; Harada J; Karlsson HKR; Handschin C; Moritz T; Krook A; Näslund E; Zierath JR Diabetologia; 2021 Sep; 64(9):2077-2091. PubMed ID: 34131782 [TBL] [Abstract][Full Text] [Related]
15. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Lackey DE; Lynch CJ; Olson KC; Mostaedi R; Ali M; Smith WH; Karpe F; Humphreys S; Bedinger DH; Dunn TN; Thomas AP; Oort PJ; Kieffer DA; Amin R; Bettaieb A; Haj FG; Permana P; Anthony TG; Adams SH Am J Physiol Endocrinol Metab; 2013 Jun; 304(11):E1175-87. PubMed ID: 23512805 [TBL] [Abstract][Full Text] [Related]
16. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Zhang L; Yue Y; Shi M; Tian M; Ji J; Liao X; Hu X; Chen F Food Chem; 2020 Aug; 320():126648. PubMed ID: 32234657 [TBL] [Abstract][Full Text] [Related]
17. Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus. Liu S; Li L; Lou P; Zhao M; Wang Y; Tang M; Gong M; Liao G; Yuan Y; Li L; Zhang J; Chen Y; Cheng J; Lu Y; Liu J Free Radic Biol Med; 2021 Nov; 175():141-154. PubMed ID: 34474107 [TBL] [Abstract][Full Text] [Related]
18. Insulin action, type 2 diabetes, and branched-chain amino acids: A two-way street. White PJ; McGarrah RW; Herman MA; Bain JR; Shah SH; Newgard CB Mol Metab; 2021 Oct; 52():101261. PubMed ID: 34044180 [TBL] [Abstract][Full Text] [Related]
19. Current biochemical studies of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis suggest a new therapeutic approach. Hookman P; Barkin JS Am J Gastroenterol; 2003 Sep; 98(9):2093-7. PubMed ID: 14499793 [TBL] [Abstract][Full Text] [Related]
20. Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis. Ananieva EA; Van Horn CG; Jones MR; Hutson SM J Nutr Biochem; 2017 Feb; 40():132-140. PubMed ID: 27886623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]