These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37581687)

  • 1. A Lipid-Structured Model of Atherosclerotic Plaque Macrophages with Lipid-Dependent Kinetics.
    Watson MG; Chambers KL; Myerscough MR
    Bull Math Biol; 2023 Aug; 85(9):85. PubMed ID: 37581687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lipid-structured model for macrophage populations in atherosclerotic plaques.
    Ford HZ; Byrne HM; Myerscough MR
    J Theor Biol; 2019 Oct; 479():48-63. PubMed ID: 31319051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lipid-Structured Model of Atherosclerosis with Macrophage Proliferation.
    Chambers KL; Watson MG; Myerscough MR
    Bull Math Biol; 2024 Jul; 86(8):104. PubMed ID: 38980556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling Preferential Phagocytosis in Atherosclerosis: Delineating Timescales in Plaque Development.
    Lui G; Myerscough MR
    Bull Math Biol; 2021 Aug; 83(9):96. PubMed ID: 34390421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new lipid-structured model to investigate the opposing effects of LDL and HDL on atherosclerotic plaque macrophages.
    Chambers KL; Myerscough MR; Byrne HM
    Math Biosci; 2023 Mar; 357():108971. PubMed ID: 36716850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage Anti-inflammatory Behaviour in a Multiphase Model of Atherosclerotic Plaque Development.
    Ahmed IU; Byrne HM; Myerscough MR
    Bull Math Biol; 2023 Mar; 85(5):37. PubMed ID: 36991234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage death in atherosclerosis: potential role in calcification.
    Neels JG; Gollentz C; Chinetti G
    Front Immunol; 2023; 14():1215612. PubMed ID: 37469518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage metabolism in atherosclerosis.
    Bories GFP; Leitinger N
    FEBS Lett; 2017 Oct; 591(19):3042-3060. PubMed ID: 28796886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of MLKL (Mixed Lineage Kinase Domain-Like Protein) Decreases Necrotic Core but Increases Macrophage Lipid Accumulation in Atherosclerosis.
    Rasheed A; Robichaud S; Nguyen MA; Geoffrion M; Wyatt H; Cottee ML; Dennison T; Pietrangelo A; Lee R; Lagace TA; Ouimet M; Rayner KJ
    Arterioscler Thromb Vasc Biol; 2020 May; 40(5):1155-1167. PubMed ID: 32212851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages.
    Kluck GEG; Qian AS; Sakarya EH; Quach H; Deng YD; Trigatti BL
    Arterioscler Thromb Vasc Biol; 2023 Jan; 43(1):45-63. PubMed ID: 36353992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets.
    De Meyer GRY; Zurek M; Puylaert P; Martinet W
    Nat Rev Cardiol; 2024 May; 21(5):312-325. PubMed ID: 38163815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy.
    Michiels CF; Kurdi A; Timmermans JP; De Meyer GRY; Martinet W
    Atherosclerosis; 2016 Aug; 251():319-327. PubMed ID: 27450786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin as a potential modulator of M1 and M2 macrophages: new insights in atherosclerosis therapy.
    Momtazi-Borojeni AA; Abdollahi E; Nikfar B; Chaichian S; Ekhlasi-Hundrieser M
    Heart Fail Rev; 2019 May; 24(3):399-409. PubMed ID: 30673930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Local Macrophage Growth Ameliorates Focal Inflammation and Suppresses Atherosclerosis.
    Yamada S; Senokuchi T; Matsumura T; Morita Y; Ishii N; Fukuda K; Murakami-Nishida S; Nishida S; Kawasaki S; Motoshima H; Furukawa N; Komohara Y; Fujiwara Y; Koga T; Yamagata K; Takeya M; Araki E
    Arterioscler Thromb Vasc Biol; 2018 May; 38(5):994-1006. PubMed ID: 29496659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intracellular signaling pathways governing macrophage activation and function in human atherosclerosis.
    Wilson HM
    Biochem Soc Trans; 2022 Dec; 50(6):1673-1682. PubMed ID: 36416621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage polarisation associated with atherosclerosis differentially affects their capacity to handle lipids.
    Baidžajevas K; Hadadi É; Lee B; Lum J; Shihui F; Sudbery I; Kiss-Tóth E; Wong SC; Wilson HL
    Atherosclerosis; 2020 Jul; 305():10-18. PubMed ID: 32592946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipin-1 contributes to modified low-density lipoprotein-elicited macrophage pro-inflammatory responses.
    Navratil AR; Vozenilek AE; Cardelli JA; Green JM; Thomas MJ; Sorci-Thomas MG; Orr AW; Woolard MD
    Atherosclerosis; 2015 Oct; 242(2):424-32. PubMed ID: 26288136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage polarization and metabolism in atherosclerosis.
    Hou P; Fang J; Liu Z; Shi Y; Agostini M; Bernassola F; Bove P; Candi E; Rovella V; Sica G; Sun Q; Wang Y; Scimeca M; Federici M; Mauriello A; Melino G
    Cell Death Dis; 2023 Oct; 14(10):691. PubMed ID: 37863894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IAP survivin regulates atherosclerotic macrophage survival.
    Blanc-Brude OP; Teissier E; Castier Y; Lesèche G; Bijnens AP; Daemen M; Staels B; Mallat Z; Tedgui A
    Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):901-7. PubMed ID: 17255535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage subsets in atherosclerosis.
    Chinetti-Gbaguidi G; Colin S; Staels B
    Nat Rev Cardiol; 2015 Jan; 12(1):10-7. PubMed ID: 25367649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.