These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37582028)

  • 1. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain.
    Zhang Z; Li S; Gao R; Zhang H; Lin J; Fang Z; Wu R; Wang M; Wang Z; Hang Y; Cheng Y
    Opt Lett; 2023 Aug; 48(16):4344-4347. PubMed ID: 37582028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Chip Integrated Yb
    Zhang Z; Fang Z; Zhou J; Liang Y; Zhou Y; Wang Z; Liu J; Huang T; Bao R; Yu J; Zhang H; Wang M; Cheng Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching.
    Zhuang R; He J; Qi Y; Li Y
    Adv Mater; 2023 Jan; 35(3):e2208113. PubMed ID: 36325644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip ytterbium-doped lithium niobate waveguide amplifiers with high net internal gain.
    Zhang Y; Luo Q; Wang S; Zheng D; Liu S; Liu H; Bo F; Kong Y; Xu J
    Opt Lett; 2023 Apr; 48(7):1810-1813. PubMed ID: 37221772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain optimization of an erbium-ytterbium co-doped amplifier via a Si
    Dong Z; Zhao Y; Wang Y; Wei W; Ding L; Tang L; Li Y
    Opt Express; 2023 Oct; 31(21):35419-35430. PubMed ID: 37859274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers.
    Chen Z; Xu Q; Zhang K; Wong WH; Zhang DL; Pun EY; Wang C
    Opt Lett; 2021 Mar; 46(5):1161-1164. PubMed ID: 33649682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and resonator-assisted characterization of high-performance lithium niobate waveguide crossings.
    Chen Y; Zhang K; Feng H; Sun W; Wang C
    Opt Lett; 2023 May; 48(9):2218-2221. PubMed ID: 37126238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching.
    Bonneville DB; Frankis HC; Wang R; Bradley JDB
    Opt Express; 2020 Sep; 28(20):30130-30140. PubMed ID: 33114897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy-free arrayed waveguide gratings on X-cut thin film lithium niobate platform of in-plane anisotropy.
    Yi J; Guo C; Ruan Z; Chen G; Wei H; Lu L; Gong S; Pan X; Shen X; Guan X; Dai D; Zhong K; Liu L
    Light Sci Appl; 2024 Jun; 13(1):147. PubMed ID: 38951501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching.
    Li C; Guan J; Lin J; Gao R; Wang M; Qiao L; Deng L; Cheng Y
    Opt Express; 2023 Sep; 31(19):31556-31562. PubMed ID: 37710670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-Sensitive Superconducting Single-Photon Detectors on Thin Film Lithium Niobate Waveguides.
    Prencipe A; Gyger S; Baghban MA; Zichi J; Zeuner KD; Lettner T; Schweickert L; Steinhauer S; Elshaari AW; Gallo K; Zwiller V
    Nano Lett; 2023 Nov; 23(21):9748-9752. PubMed ID: 37871304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-band waveguide amplifier produced by femtosecond laser writing.
    Della Valle G; Osellame R; Chiodo N; Taccheo S; Cerullo G; Laporta P; Killi A; Morgner U; Lederer M; Kopf D
    Opt Express; 2005 Aug; 13(16):5976-82. PubMed ID: 19498604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip erbium-ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold.
    Luo Q; Yang C; Hao Z; Zhang R; Ma R; Zheng D; Liu H; Yu X; Gao F; Bo F; Kong Y; Zhang G; Xu J
    Opt Lett; 2023 Jul; 48(13):3447-3450. PubMed ID: 37390152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip coherent beam combination of waveguide amplifiers on Er
    Bao R; Song L; Chen J; Wang Z; Liu J; Gao L; Liu Z; Zhang Z; Wang M; Zhang H; Fang Z; Cheng Y
    Opt Lett; 2023 Dec; 48(24):6348-6351. PubMed ID: 38099745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Production-Rate Fabrication of Low-Loss Lithium Niobate Electro-Optic Modulators Using Photolithography Assisted Chemo-Mechanical Etching (PLACE).
    Wu R; Gao L; Liang Y; Zheng Y; Zhou J; Qi H; Yin D; Wang M; Fang Z; Cheng Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain Enhancement of the Optical Waveguide Amplifier Based on NaYF
    Liu X; Zhang M; Hu G
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale heterogeneous integration of thin film lithium niobate on silicon-nitride photonic integrated circuits with low loss bonding interfaces.
    Ghosh S; Yegnanarayanan S; Kharas D; Ricci M; Plant JJ; Juodawlkis PW
    Opt Express; 2023 Mar; 31(7):12005-12015. PubMed ID: 37155822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Electrodes for Filtering the Localized Fundamental Mode of a Ridge Optical Waveguide on a Thin Lithium Niobate Nanofilm.
    Parfenov M; Agruzov P; Tronev A; Ilichev I; Usikova A; Zadiranov Y; Shamrai A
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-Tunable Narrow-Linewidth Laser Diode Based on Self-Injection Locking with a High-Q Lithium Niobate Microring Resonator.
    Huang T; Ma Y; Fang Z; Zhou J; Zhou Y; Wang Z; Liu J; Wang Z; Zhang H; Wang M; Xu J; Cheng Y
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip.
    Guan J; Lin J; Gao R; Li C; Zhao G; Li M; Wang M; Qiao L; Cheng Y
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.