These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37582122)

  • 1. Climate and health benefits of a transition from gas to electric cooking.
    Gould CF; Bejarano ML; De La Cuesta B; Jack DW; Schlesinger SB; Valarezo A; Burke M
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2301061120. PubMed ID: 37582122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China.
    Edwards RD; Smith KR; Zhang J; Ma Y
    Chemosphere; 2003 Jan; 50(2):201-15. PubMed ID: 12653292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations.
    Paulin LM; Diette GB; Scott M; McCormack MC; Matsui EC; Curtin-Brosnan J; Williams DL; Kidd-Taylor A; Shea M; Breysse PN; Hansel NN
    Indoor Air; 2014 Aug; 24(4):416-24. PubMed ID: 24329966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Health Benefits of Household Stove Upgrading and Energy Switching in Rural China.
    Meng W; Shen G; Shen H; Chen Y; Yun X; Li J; Ma J; Liu J; Cheng H; Hu J; Wan Y; Tao S
    Environ Sci Technol; 2021 Nov; 55(21):14567-14575. PubMed ID: 34672562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves.
    Dėdelė A; Miškinytė A
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17784-92. PubMed ID: 27250086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas implications of household energy technology in Kenya.
    Bailis R; Ezzati M; Kammen DM
    Environ Sci Technol; 2003 May; 37(10):2051-9. PubMed ID: 12785507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pellet-Fed Gasifier Stoves Approach Gas-Stove Like Performance during in-Home Use in Rwanda.
    Champion WM; Grieshop AP
    Environ Sci Technol; 2019 Jun; 53(11):6570-6579. PubMed ID: 31037940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis.
    Whitman T; Nicholson CF; Torres D; Lehmann J
    Environ Sci Technol; 2011 Apr; 45(8):3687-94. PubMed ID: 21446727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products.
    Li Q; Qi J; Jiang J; Wu J; Duan L; Wang S; Hao J
    Sci Total Environ; 2019 Feb; 650(Pt 1):653-660. PubMed ID: 30212694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas and Propane Combustion from Stoves Emits Benzene and Increases Indoor Air Pollution.
    Kashtan YS; Nicholson M; Finnegan C; Ouyang Z; Lebel ED; Michanowicz DR; Shonkoff SBC; Jackson RB
    Environ Sci Technol; 2023 Jul; 57(26):9653-9663. PubMed ID: 37319002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Household CO and PM measured as part of a review of China's National Improved Stove Program.
    Edwards RD; Liu Y; He G; Yin Z; Sinton J; Peabody J; Smith KR
    Indoor Air; 2007 Jun; 17(3):189-203. PubMed ID: 17542832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies.
    Hollada J; Williams KN; Miele CH; Danz D; Harvey SA; Checkley W
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28208813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Nepal's clean cooking ambitions: an open source and geospatial cost-benefit analysis.
    Ramirez C; Khavari B; Oberholzer A; Ghimire BR; Mishra B; Sinclair-Lecaros S; Mentis D; Gurung A; Khatiwada D; Nerini FF
    Lancet Planet Health; 2024 Oct; 8(10):e754-e765. PubMed ID: 39393377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health benefits of vehicle electrification through air pollution in Shanghai, China.
    Zhang S; Jiang Y; Zhang S; Choma EF
    Sci Total Environ; 2024 Mar; 914():169859. PubMed ID: 38190893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-life effectiveness of 'improved' stoves and clean fuels in reducing PM
    Pope D; Bruce N; Dherani M; Jagoe K; Rehfuess E
    Environ Int; 2017 Apr; 101():7-18. PubMed ID: 28285622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corridor-Level Impacts of Battery-Electric Heavy-Duty Trucks and the Effects of Policy in the United States.
    McNeil WH; Tong F; Harley RA; Auffhammer M; Scown CD
    Environ Sci Technol; 2024 Jan; 58(1):33-42. PubMed ID: 38109378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the Low Emissions Analysis Platform - Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits: Application for Bangladesh.
    Kuylenstierna JCI; Heaps CG; Ahmed T; Vallack HW; Hicks WK; Ashmore MR; Malley CS; Wang G; Lefèvre EN; Anenberg SC; Lacey F; Shindell DT; Bhattacharjee U; Henze DK
    Environ Int; 2020 Dec; 145():106155. PubMed ID: 33027737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in chemical composition of PM
    Lai A; Shan M; Deng M; Carter E; Yang X; Baumgartner J; Schauer J
    Chemosphere; 2019 Oct; 233():852-861. PubMed ID: 31340411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Provincial-level analysis of electrification feasibility and climate policy interactions.
    Wu H; Yang H; Hu X; Zhou Y; Wang X; Liu J; Liu Y; Tao S
    Environ Sci Ecotechnol; 2024 Nov; 22():100474. PubMed ID: 39247805
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.