These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37582341)

  • 1. Human 2'-Deoxynucleoside 5'-Phosphate
    Devi S; Carberry AE; Zickuhr GM; Dickson AL; Harrison DJ; da Silva RG
    Biochemistry; 2023 Sep; 62(17):2658-2668. PubMed ID: 37582341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enzyme-coupled microplate assay for activity and inhibition of hmdUMP hydrolysis by DNPH1.
    Wagner AG; Eskandari R; Schramm VL
    Anal Biochem; 2023 Jul; 672():115171. PubMed ID: 37142196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary distribution of deoxynucleoside 5-monophosphate N-glycosidase, DNPH1.
    Reintamm T; Aas-Valleriani N; Kelve M
    Gene; 2019 Jan; 683():1-11. PubMed ID: 30296565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of protein dynamics in thymidylate synthase catalysis: variants of conserved 2'-deoxyuridine 5'-monophosphate (dUMP)-binding Tyr-261.
    Newby Z; Lee TT; Morse RJ; Liu Y; Liu L; Venkatraman P; Santi DV; Finer-Moore JS; Stroud RM
    Biochemistry; 2006 Jun; 45(24):7415-28. PubMed ID: 16768437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.
    Huang TM; Hung HC; Chang TC; Chang GG
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):267-75. PubMed ID: 9461520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N (6)-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1.
    Amiable C; Pochet S; Padilla A; Labesse G; Kaminski PA
    PLoS One; 2013; 8(11):e80755. PubMed ID: 24260472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxynucleoside 5-monophosphate N-glycosidase from a phylogenetically distant metazoa, sponge.
    Aas-Valleriani N; Reintamm T; Kelve M
    Biochimie; 2018 Mar; 146():113-118. PubMed ID: 29273295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic mechanism of kynureninase from Pseudomonas fluorescens: insights from the effects of pH and isotopic substitution on steady-state and pre-steady-state kinetics.
    Koushik SV; Moore JA; Sundararaju B; Phillips RS
    Biochemistry; 1998 Feb; 37(5):1376-82. PubMed ID: 9477966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.
    Markham GD; Bock CL; Schalk-Hihi C
    Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of a salt bridge to binding affinity and dUMP orientation to catalytic rate: mutation of a substrate-binding arginine in thymidylate synthase.
    Finer-Moore JS; Fauman EB; Morse RJ; Santi DV; Stroud RM
    Protein Eng; 1996 Jan; 9(1):69-75. PubMed ID: 9053905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-Substituted N(4)-hydroxy-2'-deoxycytidines and their 5'-monophosphates: synthesis, conformation, interaction with tumor thymidylate synthase, and in vitro antitumor activity.
    Felczak K; Miazga A; Poznański J; Bretner M; Kulikowski T; Dzik JM; Gołos B; Zieliński Z; Cieśla J; Rode W
    J Med Chem; 2000 Nov; 43(24):4647-56. PubMed ID: 11101356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing the substrate for uracil DNA glycosylase: tracking the transmission of binding energy in catalysis.
    Jiang YL; Stivers JT
    Biochemistry; 2001 Jun; 40(25):7710-9. PubMed ID: 11412125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the nucleotide salvage factor DNPH1 sensitizes
    Fugger K; Bajrami I; Silva Dos Santos M; Young SJ; Kunzelmann S; Kelly G; Hewitt G; Patel H; Goldstone R; Carell T; Boulton SJ; MacRae J; Taylor IA; West SC
    Science; 2021 Apr; 372(6538):156-165. PubMed ID: 33833118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase.
    Drohat AC; Jagadeesh J; Ferguson E; Stivers JT
    Biochemistry; 1999 Sep; 38(37):11866-75. PubMed ID: 10508389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues.
    Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP
    Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications for an ionized alkyl-enzyme intermediate during StEH1-catalyzed trans-stilbene oxide hydrolysis.
    Elfström LT; Widersten M
    Biochemistry; 2006 Jan; 45(1):205-12. PubMed ID: 16388596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies.
    Ooga T; Yoshiba S; Nakagawa N; Kuramitsu S; Masui R
    Biochemistry; 2005 Jul; 44(26):9320-9. PubMed ID: 15981998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies on thrombin catalysis.
    Stone SR; Betz A; Hofsteenge J
    Biochemistry; 1991 Oct; 30(41):9841-8. PubMed ID: 1911776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.