These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 37582377)
1. Processing and characterization of aligned electrospun gelatin/polycaprolactone nanofiber mats incorporating borate glass (13-93B3) microparticles. Ege D; Pourshahrestani S; Iorio F; Reinfelder H; de Ligny D; Boccaccini AR Biomed Mater; 2023 Sep; 18(5):. PubMed ID: 37582377 [TBL] [Abstract][Full Text] [Related]
2. Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites. Muhammad A; Ncube M; Aravinth N; Muthu J Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850238 [TBL] [Abstract][Full Text] [Related]
3. Creation of a unique architectural structure of bioactive glass sub-micron particles incorporated in a polycaprolactone/gelatin fibrous mat; characterization, bioactivity, and cellular evaluations. Fanaee S; Labbaf S; Enayati MH; Baharlou Houreh A; Esfahani MN J Biomed Mater Res A; 2019 Jul; 107(7):1358-1365. PubMed ID: 30724467 [TBL] [Abstract][Full Text] [Related]
4. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. Jo JH; Lee EJ; Shin DS; Kim HE; Kim HW; Koh YH; Jang JH J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):213-20. PubMed ID: 19422050 [TBL] [Abstract][Full Text] [Related]
5. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Ren K; Wang Y; Sun T; Yue W; Zhang H Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():324-332. PubMed ID: 28575991 [TBL] [Abstract][Full Text] [Related]
6. Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Heidari M; Bahrami H; Ranjbar-Mohammadi M Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():218-229. PubMed ID: 28575978 [TBL] [Abstract][Full Text] [Related]
7. Physicochemical Properties and Biocompatibility of Electrospun Polycaprolactone/Gelatin Nanofibers. Lim WL; Chowdhury SR; Ng MH; Law JX Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33947053 [TBL] [Abstract][Full Text] [Related]
8. Bone morphogenetic protein (BMP)-modified graphene oxide-reinforced polycaprolactone-gelatin nanofiber scaffolds for application in bone tissue engineering. Kadhim MM; Bokov DO; Ansari MJ; Suksatan W; Jawad MA; Chupradit S; Fenjan MN; Kazemnejadi M Bioprocess Biosyst Eng; 2022 Jun; 45(6):981-997. PubMed ID: 35396960 [TBL] [Abstract][Full Text] [Related]
9. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats. Mubyana K; Koppes RA; Lee KL; Cooper JA; Corr DT J Biomed Mater Res A; 2016 Nov; 104(11):2794-800. PubMed ID: 27355844 [TBL] [Abstract][Full Text] [Related]
10. Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Shi X; Cui S; Song X; Rickel AP; Sanyour HJ; Zheng J; Hu J; Hong Z; Zhou Y; Liu Y Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110941. PubMed ID: 32409087 [TBL] [Abstract][Full Text] [Related]
11. Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. Luginina M; Schuhladen K; OrrĂº R; Cao G; Boccaccini AR; Liverani L Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32438673 [TBL] [Abstract][Full Text] [Related]
12. Epidermal stimulating factors-gelatin/polycaprolactone coaxial electrospun nanofiber: ideal nanoscale material for dermal substitute. Yan L; Wang H; Xu H; Zheng R; Shen Z J Biomater Sci Polym Ed; 2021 Jan; 32(1):60-75. PubMed ID: 32896222 [TBL] [Abstract][Full Text] [Related]
16. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. Mahjour SB; Sefat F; Polunin Y; Wang L; Wang H J Biomed Mater Res A; 2016 Jun; 104(6):1479-88. PubMed ID: 26845076 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
18. Electrospun micro/nanofibrous conduits composed of poly(epsilon-caprolactone) and small intestine submucosa powder for nerve tissue regeneration. Hong S; Kim G J Biomed Mater Res B Appl Biomater; 2010 Aug; 94(2):421-428. PubMed ID: 20574981 [TBL] [Abstract][Full Text] [Related]
19. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
20. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning. Huang YY; Wang DY; Chang LL; Yang YC J Biomater Sci Polym Ed; 2010; 21(11):1503-14. PubMed ID: 20534198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]