BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37582409)

  • 1. In-line particle size measurement during granule fluidization using convolutional neural network-aided process imaging.
    Péterfi O; Madarász L; Ficzere M; Lestyán-Goda K; Záhonyi P; Erdei G; Sipos E; Nagy ZK; Galata DL
    Eur J Pharm Sci; 2023 Oct; 189():106563. PubMed ID: 37582409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AI-based analysis of in-line process endoscope images for real-time particle size measurement in a continuous pharmaceutical milling process.
    Madarász L; Mészáros LA; Köte Á; Farkas A; Nagy ZK
    Int J Pharm; 2023 Jun; 641():123060. PubMed ID: 37209791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-line particle size measurement based on image analysis in a fully continuous granule manufacturing line for rapid process understanding and development.
    Madarász L; Köte Á; Hambalkó B; Csorba K; Kovács V; Lengyel L; Marosi G; Farkas A; Nagy ZK; Domokos A
    Int J Pharm; 2022 Jan; 612():121280. PubMed ID: 34774695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of an artificial neural network as a PAT tool for the prediction of temperature distribution within a pharmaceutical fluidized bed granulator.
    Korteby Y; Mahdi Y; Azizou A; Daoud K; Regdon G
    Eur J Pharm Sci; 2016 Jun; 88():219-32. PubMed ID: 26993961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of near-infrared spectroscopy and convolutional neural networks for predicting particle size distribution in fluidized bed granulation.
    Peng C; Zhong L; Gao L; Li L; Nie L; Wu A; Huang R; Tian W; Yin W; Wang H; Miao Q; Zhang Y; Zang H
    Int J Pharm; 2024 Apr; 655():124001. PubMed ID: 38492896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.
    Burggraeve A; Van Den Kerkhof T; Hellings M; Remon JP; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2010 Sep; 76(1):138-46. PubMed ID: 20554021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of granules produced by high-shear and fluidized-bed granulation methods.
    Morin G; Briens L
    AAPS PharmSciTech; 2014 Aug; 15(4):1039-48. PubMed ID: 24839117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico modeling of in situ fluidized bed melt granulation.
    Aleksić I; Duriš J; Ilić I; Ibrić S; Parojčić J; Srčič S
    Int J Pharm; 2014 May; 466(1-2):21-30. PubMed ID: 24607215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of fluid bed granulation utilizing artificial neural network.
    Behzadi SS; Klocker J; Hüttlin H; Wolschann P; Viernstein H
    Int J Pharm; 2005 Mar; 291(1-2):139-48. PubMed ID: 15707740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis.
    Findlay WP; Peck GR; Morris KR
    J Pharm Sci; 2005 Mar; 94(3):604-12. PubMed ID: 15666297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle size, moisture, and fluidization variations described by indirect in-line physical measurements of fluid bed granulation.
    Lipsanen T; Närvänen T; Räikkönen H; Antikainen O; Yliruusi J
    AAPS PharmSciTech; 2008; 9(4):1070-7. PubMed ID: 18931917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time feedback control of twin-screw wet granulation based on image analysis.
    Madarász L; Nagy ZK; Hoffer I; Szabó B; Csontos I; Pataki H; Démuth B; Szabó B; Csorba K; Marosi G
    Int J Pharm; 2018 Aug; 547(1-2):360-367. PubMed ID: 29879507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of particle size distribution in a continuous granulation and drying process by near infrared spectroscopy.
    Pauli V; Roggo Y; Kleinebudde P; Krumme M
    Eur J Pharm Biopharm; 2019 Aug; 141():90-99. PubMed ID: 31082510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-line monitoring of particle size in a fluid bed granulator: investigations concerning positioning and configuration of the sensor.
    Roßteuscher-Carl K; Fricke S; Hacker MC; Schulz-Siegmund M
    Int J Pharm; 2014 May; 466(1-2):31-7. PubMed ID: 24589125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line monitoring of fluid bed granulation by photometric imaging.
    Soppela I; Antikainen O; Sandler N; Yliruusi J
    Eur J Pharm Biopharm; 2014 Nov; 88(3):879-85. PubMed ID: 25174556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based simultaneous particle size distribution and concentration measurement of powder blend components with deep learning and machine vision.
    Ficzere M; Péterfi O; Farkas A; Nagy ZK; Galata DL
    Eur J Pharm Sci; 2023 Dec; 191():106611. PubMed ID: 37844806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV/VIS imaging-based PAT tool for drug particle size inspection in intact tablets supported by pattern recognition neural networks.
    Mészáros LA; Farkas A; Madarász L; Bicsár R; Galata DL; Nagy B; Nagy ZK
    Int J Pharm; 2022 May; 620():121773. PubMed ID: 35487400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.
    Liu R; Li L; Yin W; Xu D; Zang H
    Int J Pharm; 2017 Sep; 530(1-2):308-315. PubMed ID: 28743552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of fluidized bed granulation process using conventional and novel modeling techniques.
    Petrović J; Chansanroj K; Meier B; Ibrić S; Betz G
    Eur J Pharm Sci; 2011 Oct; 44(3):227-34. PubMed ID: 21839830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.