These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37582510)

  • 1. Deep learning-based reconstruction for canine brain magnetic resonance imaging could improve image quality while reducing scan time.
    Choi H; Lee SK; Choi H; Lee Y; Lee K
    Vet Radiol Ultrasound; 2023 Sep; 64(5):873-880. PubMed ID: 37582510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based reconstruction can improve canine thoracolumbar magnetic resonance image quality and reduce slice thickness.
    Kang H; Noh D; Lee SK; Choi S; Lee K
    Vet Radiol Ultrasound; 2023 Nov; 64(6):1063-1070. PubMed ID: 37667979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method.
    Sun J; Xu S; Guo Y; Ding J; Zhuo Z; Zhou D; Liu Y
    Acta Radiol; 2024 Oct; 65(10):1257-1264. PubMed ID: 39219486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.
    Brain ME; Amukotuwa S; Bammer R
    J Med Imaging Radiat Oncol; 2024 Jun; 68(4):377-384. PubMed ID: 38577926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol.
    Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A
    Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance.
    Oshima S; Fushimi Y; Miyake KK; Nakajima S; Sakata A; Okuchi S; Hinoda T; Otani S; Numamoto H; Fujimoto K; Shima A; Nambu M; Sawamoto N; Takahashi R; Ueno K; Saga T; Nakamoto Y
    Jpn J Radiol; 2023 Nov; 41(11):1216-1225. PubMed ID: 37256470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: a multi-reader study.
    Lee EJ; Hwang J; Park S; Bae SH; Lim J; Chang YW; Hong SS; Oh E; Nam BD; Jeong J; Sung JK; Nickel D
    Eur Radiol; 2023 Nov; 33(11):7697-7706. PubMed ID: 37314472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
    Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T
    Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality.
    Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T
    Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T.
    Ueda T; Yamamoto K; Yazawa N; Tozawa I; Ikedo M; Yui M; Nagata H; Nomura M; Ozawa Y; Ohno Y
    Eur Radiol Exp; 2024 Sep; 8(1):103. PubMed ID: 39254920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of late gadolinium enhancement cardiac MRI using deep learning reconstruction.
    Yang J; Wang F; Wang Z; Zhang W; Xie L; Wang L
    Acta Radiol; 2023 Oct; 64(10):2714-2721. PubMed ID: 37700572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method.
    Uetani H; Nakaura T; Kitajima M; Morita K; Haraoka K; Shinojima N; Tateishi M; Inoue T; Sasao A; Mukasa A; Azuma M; Ikeda O; Yamashita Y; Hirai T
    Eur Radiol; 2022 Jul; 32(7):4527-4536. PubMed ID: 35169896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland.
    Sato Y; Ohkuma K
    Radiol Phys Technol; 2024 Sep; 17(3):756-764. PubMed ID: 38850389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
    Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y
    Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical efficacy of motion-insensitive imaging technique with deep learning reconstruction to improve image quality in cervical spine MR imaging.
    Song YS; Lee IS; Hwang M; Jang K; Wang X; Fung M
    Br J Radiol; 2024 Mar; 97(1156):812-819. PubMed ID: 38366622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.