These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37582780)

  • 21. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features.
    Sawhney A; Li J; Liao L
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Attention-UNet Models to Predict Protein Contact Maps.
    Jisna VA; Ajay AP; Jayaraj PB
    J Comput Biol; 2024 Jul; 31(7):691-702. PubMed ID: 38979621
    [No Abstract]   [Full Text] [Related]  

  • 23. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach.
    Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J
    PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of several key factors influencing deep learning-based inter-residue contact prediction.
    Wu T; Hou J; Adhikari B; Cheng J
    Bioinformatics; 2020 Feb; 36(4):1091-1098. PubMed ID: 31504181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain.
    Yang J; Shen HB
    Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling.
    Wu H; Wang K; Lu L; Xue Y; Lyu Q; Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1106-1114. PubMed ID: 27576262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ISSEC: inferring contacts among protein secondary structure elements using deep object detection.
    Zhang Q; Zhu J; Ju F; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2020 Nov; 21(1):503. PubMed ID: 33153432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling.
    Yang J; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2013 Oct; 29(20):2579-87. PubMed ID: 23946502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting helix-helix interactions from residue contacts in membrane proteins.
    Lo A; Chiu YY; Rødland EA; Lyu PC; Sung TY; Hsu WL
    Bioinformatics; 2009 Apr; 25(8):996-1003. PubMed ID: 19244388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices.
    Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL
    BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pairing interacting protein sequences using masked language modeling.
    Lupo U; Sgarbossa D; Bitbol AF
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311887121. PubMed ID: 38913900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding Membrane Proteins by Deep Transfer Learning.
    Wang S; Li Z; Yu Y; Xu J
    Cell Syst; 2017 Sep; 5(3):202-211.e3. PubMed ID: 28957654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepDist: real-value inter-residue distance prediction with deep residual convolutional network.
    Wu T; Guo Z; Hou J; Cheng J
    BMC Bioinformatics; 2021 Jan; 22(1):30. PubMed ID: 33494711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure.
    Ji S; Oruç T; Mead L; Rehman MF; Thomas CM; Butterworth S; Winn PJ
    PLoS One; 2019; 14(1):e0205214. PubMed ID: 30620738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.
    Hong Z; Liu J; Chen Y
    Biophys Chem; 2021 Nov; 278():106666. PubMed ID: 34418678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BetAware-Deep: An Accurate Web Server for Discrimination and Topology Prediction of Prokaryotic Transmembrane β-barrel Proteins.
    Madeo G; Savojardo C; Martelli PL; Casadio R
    J Mol Biol; 2021 May; 433(11):166729. PubMed ID: 33972021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.