These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 37582780)
21. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features. Sawhney A; Li J; Liao L Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791287 [TBL] [Abstract][Full Text] [Related]
22. Using Attention-UNet Models to Predict Protein Contact Maps. Jisna VA; Ajay AP; Jayaraj PB J Comput Biol; 2024 Jul; 31(7):691-702. PubMed ID: 38979621 [No Abstract] [Full Text] [Related]
23. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion. Feng SH; Zhang WX; Yang J; Yang Y; Shen HB J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850 [TBL] [Abstract][Full Text] [Related]
24. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach. Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350 [TBL] [Abstract][Full Text] [Related]
26. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain. Yang J; Shen HB Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641 [TBL] [Abstract][Full Text] [Related]
27. Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling. Wu H; Wang K; Lu L; Xue Y; Lyu Q; Jiang M IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1106-1114. PubMed ID: 27576262 [TBL] [Abstract][Full Text] [Related]
28. ISSEC: inferring contacts among protein secondary structure elements using deep object detection. Zhang Q; Zhu J; Ju F; Kong L; Sun S; Zheng WM; Bu D BMC Bioinformatics; 2020 Nov; 21(1):503. PubMed ID: 33153432 [TBL] [Abstract][Full Text] [Related]
29. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Fuchs A; Kirschner A; Frishman D Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938 [TBL] [Abstract][Full Text] [Related]
33. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices. Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406 [TBL] [Abstract][Full Text] [Related]
34. Pairing interacting protein sequences using masked language modeling. Lupo U; Sgarbossa D; Bitbol AF Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311887121. PubMed ID: 38913900 [TBL] [Abstract][Full Text] [Related]
35. Predicting protein residue-residue contacts using random forests and deep networks. Luttrell J; Liu T; Zhang C; Wang Z BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477 [TBL] [Abstract][Full Text] [Related]
36. Folding Membrane Proteins by Deep Transfer Learning. Wang S; Li Z; Yu Y; Xu J Cell Syst; 2017 Sep; 5(3):202-211.e3. PubMed ID: 28957654 [TBL] [Abstract][Full Text] [Related]