These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37582883)

  • 1. A multiband SSr diode RF rectifier with an improved frequency ratio for biomedical wireless applications.
    Muhammad S; Waly MI; AlJarallah NA; Ghayoula R; Negm AS; Smida A; Iqbal A; Tiang JJ; Roslee M
    Sci Rep; 2023 Aug; 13(1):13246. PubMed ID: 37582883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiband Microstrip Rectenna Using ZnO-Based Planar Schottky Diode for RF Energy Harvesting Applications.
    Kayed SI; Elsheakh DN; Mohamed HA; Shawkey HA
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless power transfer system for deep-implanted biomedical devices.
    Iqbal A; Sura PR; Al-Hasan M; Mabrouk IB; Denidni TA
    Sci Rep; 2022 Aug; 12(1):13689. PubMed ID: 35953546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dual-Band Wide-Input-Range Adaptive CMOS RF-DC Converter for Ambient RF Energy Harvesting.
    Heo BR; Kwon I
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rectenna System Development Using Harmonic Balance and S-Parameters for an RF Energy Harvester.
    Md Jamil MNB; Omar M; Ibrahim R; Bingi K; Faqih M
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device.
    Hosain MD; Kouzani AZ; Tye SJ; Abulseoud OA; Amiet A; Galehdar A; Kaynak A; Berk M
    IEEE J Transl Eng Health Med; 2014; 2():1500113. PubMed ID: 27170863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting.
    Roy S; Tiang JJ; Roslee MB; Ahmed MT; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester.
    Roy S; Tiang JJ; Roslee MB; Ahmed MT; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors.
    Nguyen HQ; Le MT
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications.
    Boursianis AD; Papadopoulou MS; Koulouridis S; Rocca P; Georgiadis A; Tentzeris MM; Goudos SK
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Circularly Polarized Implantable Rectenna for Microwave Wireless Power Transfer.
    Xu C; Fan Y; Liu X
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting.
    Fan Y; Liu X; Xu C
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact high-efficiency energy harvesting positive and negative DC supplies voltage for battery-less CMOS receiver.
    Mansour M; Mansour I
    Sci Rep; 2023 Aug; 13(1):14180. PubMed ID: 37648712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications.
    Mansour M; Le Polozec X; Kanaya H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and performance analysis of a rectenna system for charging a mobile phone from ambient EM waves.
    Kar PC; Islam MA
    Heliyon; 2023 Mar; 9(3):e13964. PubMed ID: 36873516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of 2400-2450 MHz Frequency Band RF Energy Harvesting System for Low-Power Device Operation.
    Khan NU; Ullah S; Khan FU; Merla A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and Accurate Approach to RF-DC Conversion Efficiency Estimation for Multi-Tone Signals.
    Eidaks J; Kusnins R; Babajans R; Cirjulina D; Semenjako J; Litvinenko A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications.
    Lee W; Choi SI; Kim HI; Hwang S; Jeon S; Yoon YK
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Compact Circular Rectenna for RF-Energy Harvesting at ISM Band.
    Prashad L; Mohanta HC; Mohamed HG
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Miniaturized UHF-Band Rectenna for Power Transmission to Deep-Body Implantable Devices.
    Abdi A; Aliakbarian H
    IEEE J Transl Eng Health Med; 2019; 7():1900311. PubMed ID: 31236319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.