These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37583116)

  • 1. Coupling of NAD(P)H:FMN-oxidoreductase and luciferase from luminous bacteria in a viscous medium: Finding the weakest link in the chain.
    Sutormin OS; Nemtseva EV; Gulnov DV; Sukovatyi LA; Tyrtyshnaya YS; Lisitsa AE; Kratasyuk VA
    Photochem Photobiol; 2024; 100(2):465-476. PubMed ID: 37583116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of luciferase and NADH:FMN oxidoreductase concentrations on the light kinetics of bacterial bioluminescence.
    Lavi J; Raunio R; Malkov Y; Lövgren T
    Biochem Biophys Res Commun; 1983 Feb; 111(1):266-73. PubMed ID: 6830592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantitative detection of NADH by in vitro bacterial luciferase bioluminescent].
    Mei C; Wang J; Lin H; Wang J
    Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1223-8. PubMed ID: 20030062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of immobilized and soluble NADH:FMN-oxidoreductase-luciferase coupled enzyme system.
    Esimbekova EN; Torgashina IG; Kratasyuk VA
    Biochemistry (Mosc); 2009 Jun; 74(6):695-700. PubMed ID: 19645676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE; Tu SC
    Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase.
    Lei B; Tu SC
    Biochemistry; 1998 Oct; 37(41):14623-9. PubMed ID: 9772191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin and Starch: What Better Stabilizes the Enzyme Activity?
    Esimbekova EN; Govorun AE; Lonshakova-Mukina VI; Kratasyuk VA
    Dokl Biol Sci; 2020 Mar; 491(1):43-46. PubMed ID: 32483706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific immobilization of in vivo biotinylated bacterial luciferase and FMN:NAD(P)H oxidoreductase.
    Min DJ; Andrade JD; Stewart RJ
    Anal Biochem; 1999 May; 270(1):133-9. PubMed ID: 10328774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of quinones on enzymatic bioluminescence of NADH-dependent systems].
    Kudriasheva NS; Esimbekova EN; Kudinova IIu; Kratasiuk VA; Stom DU
    Prikl Biokhim Mikrobiol; 2000; 36(4):474-8. PubMed ID: 10994199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of the control of luminescence in Beneckea harveyi: properties of the NADH and NADPH:FMN oxidoreductases.
    Jablonski E; DeLuca M
    Biochemistry; 1978 Feb; 17(4):672-8. PubMed ID: 23827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavin mononucleotide reductase of luminous bacteria.
    Duane W; Hastings JW
    Mol Cell Biochem; 1975 Jan; 6(1):53-64. PubMed ID: 47604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificities and properties of three reduced pyridine nucleotide-flavin mononucleotide reductases coupling to bacterial luciferase.
    Watanabe H; Hastings JW
    Mol Cell Biochem; 1982 May; 44(3):181-7. PubMed ID: 6981058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria NADH:FMN-oxidoreductase-luciferase.
    Bezrukikh A; Esimbekova E; Nemtseva E; Kratasyuk V; Shimomura O
    Anal Bioanal Chem; 2014 Sep; 406(23):5743-7. PubMed ID: 25002335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSMEG_3955 from Mycobacterium smegmatis is a FMN bounded homotrimeric NAD(P)H:Flavin mononucleotide (FMN) oxidoreductase.
    Khosla N; Thayil SM; Kaur R; Kesavan AK
    BMC Microbiol; 2021 Nov; 21(1):319. PubMed ID: 34798816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic conversion of dehydrocoelenterazine to coelenterazine using FMN-bound flavin reductase of NAD(P)H:FMN oxidoreductase.
    Inouye S; Nakamura M; Hosoya T
    Biochem Biophys Res Commun; 2022 Jan; 587():24-28. PubMed ID: 34864391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of a NAD(P)H:flavin oxidoreductase from the luminous bacterium, Beneckea harveyi.
    Michaliszyn GA; Wing SS; Meighen EA
    J Biol Chem; 1977 Nov; 252(21):7495-9. PubMed ID: 303240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.
    Lei B; Liu M; Huang S; Tu SC
    J Bacteriol; 1994 Jun; 176(12):3552-8. PubMed ID: 8206832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity.
    Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase.
    Vetrova EV; Kudryasheva NS; Visser AJ; van Hoek A
    Luminescence; 2005; 20(3):205-9. PubMed ID: 15924327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity purification of bacterial luciferase and NAD(P)H:FMN oxidoreductases by FMN-sepharose for analytical applications.
    Lavi JT; Raunio RP; Stahlberg TH
    J Biolumin Chemilumin; 1990; 5(3):187-92. PubMed ID: 2220416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.