These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37583116)

  • 21. Probing the mechanisms of the biological intermolecular transfer of reduced flavin.
    Tu SC; Lei B; Liu M; Tang CK; Jeffers C
    J Nutr; 2000 Feb; 130(2S Suppl):331S-332S. PubMed ID: 10721898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [NADPH- and ATP-dependent luminescence of extracts from luminous bacteria].
    Vysotskiĭ ES; Zavoruev VV; Mezhevikin VV
    Biokhimiia; 1982 Dec; 47(12):1983-7. PubMed ID: 7159622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Bioluminescent method of determining picomolar amounts of nicotinamide-adenine dinucleotide using an immobilized extract of the luminescent bacterium Beneckea harveyi].
    Lebedeva OV; Ugarova NN; Deĭko TV; Raĭnina EI; Makhlis TA
    Prikl Biokhim Mikrobiol; 1985; 21(1):114-21. PubMed ID: 3872452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression, biochemical characterization, and mutation of a water forming NADH: FMN oxidoreductase from Lactobacillus rhamnosus.
    Li FL; Su WB; Tao QL; Zhang LY; Zhang YW
    Enzyme Microb Technol; 2020 Mar; 134():109464. PubMed ID: 32044036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase.
    Koch K; Hromic A; Sorokina M; Strandback E; Reisinger M; Gruber K; Macheroux P
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1046-1056. PubMed ID: 28499769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic solvent viscosity effects uncover an internal isomerization of the enzyme-substrate complex in Pseudomonas aeruginosa PAO1 NADH:Quinone oxidoreductase.
    Quaye JA; Ball J; Gadda G
    Arch Biochem Biophys; 2022 Sep; 727():109342. PubMed ID: 35777523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems.
    Ugarova NN; Lebedeva OV; Frumkina IG
    Anal Biochem; 1988 Sep; 173(2):221-7. PubMed ID: 3263818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibrio harveyi NADPH-FMN oxidoreductase arg203 as a critical residue for NADPH recognition and binding.
    Wang H; Lei B; Tu SC
    Biochemistry; 2000 Jul; 39(26):7813-9. PubMed ID: 10869187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of intracellular pyridine nucleotide levels by bioluminescence using anaerobic bacteria as a model.
    Schmid U; Schimz KL; Sahm H
    Anal Biochem; 1989 Jul; 180(1):17-23. PubMed ID: 2817339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mechanism of action of 2,4-dinitrofluorobenzene on bacterial luminescence in vitro].
    Kratasiuk VA; Fish AM
    Biokhimiia; 1980 Jul; 45(7):1175-81. PubMed ID: 7213855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of bacterial luciferase and FMN reductase on glass rods.
    Jablonski E; DeLuca M
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3848-51. PubMed ID: 11465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of Viscous Media Effects on Elementary Steps of Bacterial Bioluminescent Reaction.
    Lisitsa AE; Sukovatyi LA; Bartsev SI; Deeva AA; Kratasyuk VA; Nemtseva EV
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic Responses to Low-Intensity Radiation of Tritium.
    Rozhko TV; Nemtseva EV; Gardt MV; Raikov AV; Lisitsa AE; Badun GA; Kudryasheva NS
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity coupling of Vibrio harveyi luciferase and flavin reductase (FRP): oxygen as a probe.
    Li X; Tu SC
    Arch Biochem Biophys; 2006 Oct; 454(1):26-31. PubMed ID: 16949542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase.
    Louie TM; Yang H; Karnchanaphanurach P; Xie XS; Xun L
    J Biol Chem; 2002 Oct; 277(42):39450-5. PubMed ID: 12177066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox compounds influence on the NAD(P)H:FMN-oxidoreductase-luciferase bioluminescent system.
    Vetrova EV; Kudryasheva NS; Kratasyuk VA
    Photochem Photobiol Sci; 2007 Jan; 6(1):35-40. PubMed ID: 17200734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAD(P)H:flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction.
    Riefler RG; Smets BF
    Appl Environ Microbiol; 2002 Apr; 68(4):1690-6. PubMed ID: 11916686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2.
    Hallé F; Meyer JM
    Eur J Biochem; 1992 Oct; 209(2):621-7. PubMed ID: 1425668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.