These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37583146)
1. Numerical evidence of a universal critical behavior of two-dimensional and three-dimensional random quantum clock and Potts models. Anfray V; Chatelain C Phys Rev E; 2023 Jul; 108(1-1):014124. PubMed ID: 37583146 [TBL] [Abstract][Full Text] [Related]
2. Griffiths phase and critical behavior of the two-dimensional Potts models with long-range correlated disorder. Chatelain C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032105. PubMed ID: 24730788 [TBL] [Abstract][Full Text] [Related]
3. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527 [TBL] [Abstract][Full Text] [Related]
4. Griffiths-McCoy singularities in random quantum spin chains: exact results through renormalization. Iglói F; Juhász R; Lajkó P Phys Rev Lett; 2001 Feb; 86(7):1343-6. PubMed ID: 11178079 [TBL] [Abstract][Full Text] [Related]
5. Dilute Potts model in two dimensions. Qian X; Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056132. PubMed ID: 16383713 [TBL] [Abstract][Full Text] [Related]
6. Geometric properties of two-dimensional critical and tricritical Potts models. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026123. PubMed ID: 14995536 [TBL] [Abstract][Full Text] [Related]
7. Equivalent-neighbor Potts models in two dimensions. Qian X; Deng Y; Liu Y; Guo W; Blöte HW Phys Rev E; 2016 Nov; 94(5-1):052103. PubMed ID: 27967043 [TBL] [Abstract][Full Text] [Related]
8. Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations. Fan S; Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011122. PubMed ID: 19257016 [TBL] [Abstract][Full Text] [Related]
9. Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries. Chatelain C; Berche B Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3853-65. PubMed ID: 11970220 [TBL] [Abstract][Full Text] [Related]
10. Renormalization group study of random quantum magnets. Kovács IA; Iglói F J Phys Condens Matter; 2011 Oct; 23(40):404204. PubMed ID: 21931186 [TBL] [Abstract][Full Text] [Related]
11. Interfacial adsorption in two-dimensional pure and random-bond Potts models. Fytas NG; Theodorakis PE; Malakis A Phys Rev E; 2017 Mar; 95(3-1):032126. PubMed ID: 28415364 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo Renormalization Flows in the Space of Relevant and Irrelevant Operators: Application to Three-Dimensional Clock Models. Shao H; Guo W; Sandvik AW Phys Rev Lett; 2020 Feb; 124(8):080602. PubMed ID: 32167327 [TBL] [Abstract][Full Text] [Related]
13. Phase diagram and critical exponents of a Potts gauge glass. Jacobsen JL; Picco M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026113. PubMed ID: 11863593 [TBL] [Abstract][Full Text] [Related]
14. Effects of quenched disorder in the two-dimensional Potts model: a Monte Carlo study. Paredes V R; Valbuena J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6275-80. PubMed ID: 11969611 [TBL] [Abstract][Full Text] [Related]
15. Universal order parameters and quantum phase transitions: a finite-size approach. Shi QQ; Zhou HQ; Batchelor MT Sci Rep; 2015 Jan; 5():7673. PubMed ID: 25567585 [TBL] [Abstract][Full Text] [Related]
16. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model. Dai YW; Cho SY; Batchelor MT; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062142. PubMed ID: 25019759 [TBL] [Abstract][Full Text] [Related]
17. Disorder-induced rounding of the phase transition in the large-q-state Potts model. Mercaldo MT; Anglès D'Auriac JC; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056112. PubMed ID: 15244888 [TBL] [Abstract][Full Text] [Related]
18. Infinite-randomness critical point in the two-dimensional disordered contact process. Vojta T; Farquhar A; Mast J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005 [TBL] [Abstract][Full Text] [Related]
19. Softening of first-order transition in three-dimensions by quenched disorder. Chatelain C; Berche B; Janke W; Berche PE Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036120. PubMed ID: 11580407 [TBL] [Abstract][Full Text] [Related]
20. Phase transitions in nonequilibrium d-dimensional models with q absorbing states. Lipowski A; Droz M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056114. PubMed ID: 12059654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]