These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 37583191)
1. Nonmonotonic dependence of thermal conductivity on surface roughness: A multiparticle Lorentz gas model. Wang T; Tian S; Ma D; Zhang L Phys Rev E; 2023 Jul; 108(1-1):014125. PubMed ID: 37583191 [TBL] [Abstract][Full Text] [Related]
2. Thermal rectification induced by geometrical asymmetry: A two-dimensional multiparticle Lorentz gas model. Wang H; Yang Y; Chen H; Li N; Zhang L Phys Rev E; 2019 Jun; 99(6-1):062111. PubMed ID: 31330704 [TBL] [Abstract][Full Text] [Related]
3. Interface thermal resistance induced by geometric shape mismatch: A multiparticle Lorentz gas model. Wang T; Yang Y; Wu Y; Xu L; Ma D; Zhang L Phys Rev E; 2021 Aug; 104(2-1):024801. PubMed ID: 34525599 [TBL] [Abstract][Full Text] [Related]
4. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures. Wang Z; Sun F; Liu Z; Zheng L; Wang D; Feng Y ACS Appl Mater Interfaces; 2023 Mar; 15(12):16162-16176. PubMed ID: 36924078 [TBL] [Abstract][Full Text] [Related]
5. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons. Xie G; Shen Y Phys Chem Chem Phys; 2015 Apr; 17(14):8822-7. PubMed ID: 25743638 [TBL] [Abstract][Full Text] [Related]
7. Enhanced energy transport owing to nonlinear interface interaction. Su R; Yuan Z; Wang J; Zheng Z Sci Rep; 2016 Jan; 6():19628. PubMed ID: 26787363 [TBL] [Abstract][Full Text] [Related]
8. Two-Channel Thermal Transport in Ordered-Disordered Superionic Ag Wu B; Zhou Y; Hu M J Phys Chem Lett; 2018 Oct; 9(19):5704-5709. PubMed ID: 30222358 [TBL] [Abstract][Full Text] [Related]
9. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons. Zhou Y; Hu M Nano Lett; 2016 Oct; 16(10):6178-6187. PubMed ID: 27603153 [TBL] [Abstract][Full Text] [Related]
11. Thermal Hall effect from a modified Lorentz gas model. Chen H; Yang Y; Yu Z; Zhong M; Zhang L Phys Rev E; 2020 Apr; 101(4-1):042129. PubMed ID: 32422723 [TBL] [Abstract][Full Text] [Related]
12. Suppressed-to-enhanced thermal transport in a Fermi-Pasta-Ulam superlattice: Mediation roles of solitons and phonons. Wang J; Chen J Phys Rev E; 2020 Apr; 101(4-1):042207. PubMed ID: 32422702 [TBL] [Abstract][Full Text] [Related]
13. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons. Chen J; Meng L ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022 [TBL] [Abstract][Full Text] [Related]
14. Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness. Liang Z; Sasikumar K; Keblinski P Phys Rev Lett; 2014 Aug; 113(6):065901. PubMed ID: 25148335 [TBL] [Abstract][Full Text] [Related]
16. Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures. Graczykowski B; El Sachat A; Reparaz JS; Sledzinska M; Wagner MR; Chavez-Angel E; Wu Y; Volz S; Wu Y; Alzina F; Sotomayor Torres CM Nat Commun; 2017 Sep; 8(1):415. PubMed ID: 28871197 [TBL] [Abstract][Full Text] [Related]
17. Transient in-plane thermal transport in nanofilms with internal heating. Hua YC; Cao BY Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150811. PubMed ID: 27118903 [TBL] [Abstract][Full Text] [Related]
19. Experimental Study on Thermal Conductivity and Rectification in Suspended Monolayer MoS Yang X; Zheng X; Liu Q; Zhang T; Bai Y; Yang Z; Chen H; Liu M ACS Appl Mater Interfaces; 2020 Jun; 12(25):28306-28312. PubMed ID: 32478499 [TBL] [Abstract][Full Text] [Related]
20. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Hu J; Ruan X; Chen YP Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]