These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37583232)
1. Droplet finite-size scaling of the majority-vote model on scale-free networks. Alencar DSM; Alves TFA; Lima FWS; Ferreira RS; Alves GA; Macedo-Filho A Phys Rev E; 2023 Jul; 108(1-1):014308. PubMed ID: 37583232 [TBL] [Abstract][Full Text] [Related]
2. Majority-vote model with degree-weighted influence on complex networks. Kim M; Yook SH Phys Rev E; 2021 Feb; 103(2-1):022302. PubMed ID: 33735960 [TBL] [Abstract][Full Text] [Related]
3. Three-State Majority-vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents. Vilela ALM; Zubillaga BJ; Wang C; Wang M; Du R; Stanley HE Sci Rep; 2020 May; 10(1):8255. PubMed ID: 32427868 [TBL] [Abstract][Full Text] [Related]
4. Majority-vote model on hyperbolic lattices. Wu ZX; Holme P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011133. PubMed ID: 20365349 [TBL] [Abstract][Full Text] [Related]
5. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes. Sampaio Filho CI; Dos Santos TB; Moreira AA; Moreira FG; Andrade JS Phys Rev E; 2016 May; 93(5):052101. PubMed ID: 27300824 [TBL] [Abstract][Full Text] [Related]
6. Critical phenomena on scale-free networks: logarithmic corrections and scaling functions. Palchykov V; von Ferber C; Folk R; Holovatch Y; Kenna R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011145. PubMed ID: 20866603 [TBL] [Abstract][Full Text] [Related]
7. Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model. Crokidakis N; de Oliveira PM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041147. PubMed ID: 22680457 [TBL] [Abstract][Full Text] [Related]
8. Critical noise of majority-vote model on complex networks. Chen H; Shen C; He G; Zhang H; Hou Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022816. PubMed ID: 25768561 [TBL] [Abstract][Full Text] [Related]
9. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs. Bizhani G; Grassberger P; Paczuski M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066111. PubMed ID: 22304159 [TBL] [Abstract][Full Text] [Related]
10. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension. Kastening B; Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377 [TBL] [Abstract][Full Text] [Related]
11. Majority-vote model on random graphs. Pereira LF; Moreira FG Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016123. PubMed ID: 15697674 [TBL] [Abstract][Full Text] [Related]
12. Finite-size scaling of synchronized oscillation on complex networks. Hong H; Park H; Tang LH Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066104. PubMed ID: 18233895 [TBL] [Abstract][Full Text] [Related]
13. Diversity of critical behavior within a universality class. Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061128. PubMed ID: 18643238 [TBL] [Abstract][Full Text] [Related]
14. Opinion Dynamics Systems on Barabási-Albert Networks: Biswas-Chatterjee-Sen Model. Alencar DSM; Alves TFA; Alves GA; Macedo-Filho A; Ferreira RS; Lima FWS; Plascak JA Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832551 [TBL] [Abstract][Full Text] [Related]
15. Phase transition in the majority-vote model on the Archimedean lattices. Yu U Phys Rev E; 2017 Jan; 95(1-1):012101. PubMed ID: 28208396 [TBL] [Abstract][Full Text] [Related]
16. Possibility of Fisher renormalization of the critical exponents in an Ising fluid. Fenz W; Folk R; Mryglod IM; Omelyan IP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061504. PubMed ID: 17677266 [TBL] [Abstract][Full Text] [Related]
17. Approaching the thermodynamic limit in equilibrated scale-free networks. Waclaw B; Bogacz L; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061125. PubMed ID: 19256820 [TBL] [Abstract][Full Text] [Related]
18. Finite-size scaling of the random-field Ising model above the upper critical dimension. Fytas NG; Martín-Mayor V; Parisi G; Picco M; Sourlas N Phys Rev E; 2023 Oct; 108(4-1):044146. PubMed ID: 37978671 [TBL] [Abstract][Full Text] [Related]
19. Universality of the local persistence exponent for models in the directed Ising class in one dimension. Shambharkar ND; Gade PM Phys Rev E; 2019 Sep; 100(3-1):032119. PubMed ID: 31639921 [TBL] [Abstract][Full Text] [Related]
20. Majority-vote model on a random lattice. Lima FW; Fulco UL; Costa Filho RN Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036105. PubMed ID: 15903491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]